为什么使用 lme4 的线性混合模型的输出显示一个因子水平而不是另一个?

Why does the output of of a linear mixed model using lme4 show one level of a factor but not another?

我正在使用 lme4 包和 运行 线性混合模型,但我很困惑,但输出并预计我会遇到错误,即使我没有收到错误消息。 基本问题是当我适合 lmer(Values ~ stimuli + timeperiod + scale(poly(distance.code,3,raw=FALSE))*habitat + wind.speed + (1|location.code), data=df, REML=FALSE) 这样的模型时 然后使用 summary 之类的方法查看结果 我看到所有模型的固定(和随机)效果如我所料,但是栖息地效果始终显示为 habitatForest。像这样:

Fixed effects:
                                                            Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)                                                996.63179    8.16633   31.22730 122.042  < 2e-16 ***
stimuliBHCO                                                 -3.57541    1.28877 8750.89273  -2.774 0.005544 ** 
stimuliCOHA                                                -10.17037    1.29546 8754.17156  -7.851 4.62e-15 ***
timeperiod                                                   0.19900    0.05516 8744.95307   3.608 0.000310 ***
scale(poly(distance.code, 3, raw = FALSE))1                 -3.87613    0.71431 8745.70773  -5.426 5.90e-08 ***
scale(poly(distance.code, 3, raw = FALSE))2                  2.65854    0.71463 8745.19353   3.720 0.000200 ***
scale(poly(distance.code, 3, raw = FALSE))3                  4.66340    0.72262 8745.67948   6.453 1.15e-10 ***
habitatForest                                              -68.82430   11.83009   29.95226  -5.818 2.34e-06 ***
wind.speed                                                  -0.35853    0.07631 8403.15191  -4.698 2.66e-06 ***
scale(poly(distance.code, 3, raw = FALSE))1:habitatForest    2.89860    1.03891 8745.46534   2.790 0.005282 ** 
scale(poly(distance.code, 3, raw = FALSE))2:habitatForest   -3.49758    1.03829 8745.11371  -3.369 0.000759 ***
scale(poly(distance.code, 3, raw = FALSE))3:habitatForest   -4.67300    1.03913 8745.30579  -4.497 6.98e-06 ***
---

即使有两个级别的栖息地(森林和草地),也会发生这种情况 起初,我认为这可能是因为我的模型有一个交互项,但当我尝试像 lmer(Values ~ stimuli + timeperiod + distance.code + habitat + wind.speed + (1|location.code), data=ex.df, REML=FALSE)

这样的更简单的模型时会发生这种情况

为什么它会说“habitatForest”而不仅仅是“habitat”,或者如果它要包含一个名称中的因素为什么不说“habitatForest”和“habitatGrassland”?

在此处快速查看此函数的预期输出:https://rpubs.com/palday/mixed-interactions or here: https://ase.tufts.edu/bugs/guide/assets/mixed_model_guide.html(以及其他) 表明我得到的输出不是预期的或正常的。 我看到的其他输出只是有两个水平的因素,就像我的一样,作为一条线(例如栖息地)。

这是我使用的部分数据。我用 dputsubseting 来制作这个。我无法弄清楚如何缩小数据集并仍然重现错误,所以如果这太大了,我深表歉意。它来自的数据集要大得多! (如果我使用 dput 不正确,请告诉我。(对 R 和 Whosebug 还是新手)

structure(list(location.code = structure(c(1L, 1L, 1L, 2L, 2L, 
2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 
2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 
1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 
2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 
2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 
1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 
3L, 3L, 4L, 4L, 4L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 1L, 1L, 2L, 2L, 
1L, 1L, 1L, 2L, 2L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 
4L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 
2L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 3L, 3L, 3L, 
4L, 4L, 4L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 4L, 4L, 4L, 
3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 
1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 
3L, 3L, 4L, 4L, 4L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 1L, 1L, 2L, 2L, 
1L, 1L, 1L, 2L, 2L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 
4L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 
2L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 3L, 3L, 3L, 
4L, 4L, 4L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 4L, 4L, 4L, 
3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 
1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 
3L, 3L, 4L, 4L, 4L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 1L, 1L, 2L, 2L, 
1L, 1L, 1L, 2L, 2L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 
4L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 
2L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 3L, 3L, 3L, 
4L, 4L, 4L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 4L, 4L, 4L, 
3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 
1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 
3L, 3L, 4L, 4L, 4L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 1L, 1L, 2L, 2L, 
1L, 1L, 1L, 2L, 2L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 
4L, 3L, 3L, 3L, 4L, 4L, 4L), .Label = c("BSF1", "BSG1", "RLF3", 
"RLG3", "CCBSF1", "CCBSG1", "CPF1", "CPF2", "CPG1", "CPG2", "OSG1", 
"OSG2", "RLF4", "RLF5", "RLF1", "RLF2", "RLG1", "RLG2", "BNPF1", 
"BNPG1", "OSG3", "OSF1", "CMG3", "CMF1", "BSG2", "BSG3", "WSF1", 
"WSF2", "HPG1", "HPG2"), class = "factor"), habitat = structure(c(2L, 
2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 
1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 
1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 
2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 
1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 
1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 
2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 
2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 
2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 
2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 
1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 
1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 
2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 
2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 
2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 
2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 
1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 
1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 
2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 
2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 
2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 
2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 
1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 
1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 
2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 
2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 
2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L), .Label = c("Grassland", 
"Forest"), class = "factor"), distance.code = c(0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 
30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L), stimuli = structure(c(3L, 3L, 3L, 2L, 2L, 2L, 3L, 3L, 3L, 
2L, 2L, 2L, 3L, 3L, 3L, 2L, 2L, 2L, 3L, 3L, 3L, 2L, 2L, 2L, 3L, 
3L, 3L, 2L, 2L, 2L, 3L, 3L, 3L, 2L, 2L, 2L, 3L, 3L, 3L, 2L, 2L, 
2L, 3L, 3L, 3L, 2L, 2L, 2L, 3L, 3L, 3L, 2L, 2L, 2L, 3L, 3L, 3L, 
2L, 2L, 2L, 3L, 3L, 3L, 2L, 2L, 2L, 3L, 3L, 3L, 2L, 2L, 2L, 3L, 
3L, 3L, 2L, 2L, 2L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 
2L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 
3L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 
2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 
1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 
2L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 
3L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 
2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 
1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 
2L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 
3L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 
2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 
1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 
2L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 
3L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 
1L, 1L, 1L), .Label = c("FOSP", "BHCO", "COHA", "YEWA", "TUTI"
), class = "factor"), wind.speed = c(0.8, 0.8, 0.8, 0.2, 0.2, 
0.2, 0.8, 0.8, 0.8, 0.2, 0.2, 0.2, 0.8, 0.8, 0.8, 0.2, 0.2, 0.2, 
0.8, 0.8, 0.8, 0.2, 0.2, 0.2, 0.8, 0.8, 0.8, 0.2, 0.2, 0.2, 0.8, 
0.8, 0.8, 0.2, 0.2, 0.2, 0.8, 0.8, 0.8, 0.2, 0.2, 0.2, 0.8, 0.8, 
0.8, 0.2, 0.2, 0.2, 0.8, 0.8, 0.8, 0.2, 0.2, 0.2, 0.8, 0.8, 0.8, 
0.2, 0.2, 0.2, 0.8, 0.8, 0.8, 0.2, 0.2, 0.2, 0.8, 0.8, 0.8, 0.2, 
0.2, 0.2, 0.8, 0.8, 0.8, 0.2, 0.2, 0.2, 0.8, 0.8, 0.8, 0.2, 0.2, 
0.2, 65, 65, 65, 65, 65, 55, 55, 55, 50, 50, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0.9, 0.9, 0.9, 65, 65, 65, 65, 65, 
55, 55, 55, 50, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0.9, 0.9, 0.9, 65, 65, 65, 65, 65, 55, 55, 55, 50, 50, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.9, 0.9, 0.9, 65, 
65, 65, 65, 65, 55, 55, 55, 50, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0.9, 0.9, 0.9, 65, 65, 65, 65, 65, 55, 55, 
55, 50, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.9, 
0.9, 0.9, 65, 65, 65, 65, 65, 55, 55, 55, 50, 50, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.9, 0.9, 0.9, 65, 65, 65, 65, 
65, 55, 55, 55, 50, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0.9, 0.9, 0.9, 65, 65, 65, 65, 65, 55, 55, 55, 50, 50, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.9, 0.9, 0.9, 65, 
65, 65, 65, 65, 55, 55, 55, 50, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0.9, 0.9, 0.9, 65, 65, 65, 65, 65, 55, 55, 
55, 50, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.9, 
0.9, 0.9, 65, 65, 65, 65, 65, 55, 55, 55, 50, 50, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.9, 0.9, 0.9, 65, 65, 65, 65, 
65, 55, 55, 55, 50, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0.9, 0.9, 0.9, 65, 65, 65, 65, 65, 55, 55, 55, 50, 50, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.9, 0.9, 0.9, 65, 
65, 65, 65, 65, 55, 55, 55, 50, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0.9, 0.9, 0.9), timeperiod = c(6L, 6L, 6L, 
6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 
9L, 9L, 9L, 9L, 9L, 11L, 11L, 11L, 11L, 11L, 11L, 13L, 13L, 13L, 
13L, 13L, 13L, 15L, 15L, 15L, 15L, 15L, 15L, 17L, 17L, 17L, 17L, 
17L, 17L, 19L, 19L, 19L, 19L, 19L, 19L, 20L, 20L, 20L, 20L, 20L, 
20L, 21L, 21L, 21L, 21L, 21L, 21L, 22L, 22L, 22L, 22L, 22L, 22L, 
23L, 23L, 23L, 23L, 23L, 23L, 24L, 24L, 24L, 24L, 24L, 24L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 
8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 11L, 
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 
11L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 
13L, 13L, 13L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 
15L, 15L, 15L, 15L, 15L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 
17L, 17L, 17L, 17L, 17L, 17L, 17L, 19L, 19L, 19L, 19L, 19L, 19L, 
19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 
19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 20L, 20L, 20L, 20L, 
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 21L, 21L, 
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 
22L, 22L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 
23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 
23L, 23L, 23L, 23L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 
24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 
24L, 24L, 24L, 24L, 24L, 24L), Values = c(910.721895276374, 922.652711611841, 
926.219785713456, 1030.28919690464, 1121.98321368732, 992.741416151102, 
910.878353926705, 920.201901019659, 922.134996121665, 992.059286431433, 
1042.05240231832, 1018.99804250179, 911.976009884021, 918.215389274037, 
931.037495260958, 981.032280455129, 983.700699744073, 989.716307418049, 
911.476759038955, 918.554393750162, 920.391856289719, 994.583211567691, 
1006.58290843226, 1005.52479816571, 908.665064025178, 917.940176257067, 
922.746174825048, 986.419049170517, 1042.41789735969, 1082.89658057517, 
916.02310296116, 918.254868924698, 931.01648294424, 982.154409713674, 
1008.54477137219, 996.577798511801, 912.914857937818, 916.937508116615, 
920.933077377339, 997.669828575817, 1007.44452218386, 1151.25894192961, 
909.463528658898, 915.293665875472, 921.917039784441, 983.866984633392, 
1002.04551764872, 986.791628665069, 907.695668282537, 917.845214744473, 
932.330755620455, 972.609449456089, 1155.55960936774, 1083.40557091613, 
909.903267624225, 914.846316952797, 921.279328283221, 1000.3672969178, 
1021.78461788922, 1011.40975353271, 915.037273600535, 914.099859036178, 
924.116937361394, 994.428182266452, 1123.09745015276, 1004.1485272116, 
914.431649376896, 915.27037594587, 929.411251949862, 974.273124973661, 
1145.99211507205, 1013.58184367388, 913.467056616881, 920.213007520924, 
919.794369158301, 983.816025282468, 1103.11322201674, 974.792027063404, 
910.532609655114, 917.616832229923, 923.462599912213, 1015.24811721269, 
1070.61183211249, 1016.57332551186, 910.196695694198, 923.403802532832, 
905.400995326023, 1036.98011238981, 963.147077473505, 916.899569521736, 
931.240844862156, 919.11781354823, 995.408916523572, 960.825305234446, 
1026.22960551445, 1000.13773127026, 962.347584090332, 904.090295814044, 
908.836747102913, 928.867625382891, 918.100799763641, 906.282906701285, 
913.146312873635, 977.094140033575, 972.599778534534, 964.658406857446, 
921.91272768213, 910.507770576621, 942.269786765654, 1014.34022271036, 
1128.29327664605, 1043.1365958913, 919.185972424773, 925.486310755197, 
908.769520270226, 1030.20866627018, 956.104935565803, 922.01947330213, 
934.451182538208, 928.626906337293, 986.326936258622, 1003.40797963907, 
1021.91264348048, 995.68658929192, 993.102343807935, 901.633626404701, 
908.255562868123, 922.840049924103, 917.012733437446, 907.541530752433, 
915.050696506642, 983.542956895186, 972.236377246083, 965.082329354352, 
918.337944633569, 910.137012141557, 952.89462134025, 977.420371016686, 
1154.17994731565, 1022.82998099991, 927.061613377597, 926.745527716988, 
908.284054932259, 966.157586219165, 974.986841619676, 916.559494755925, 
935.817296050643, 918.835719171662, 1023.62078549133, 1009.23121097376, 
1005.81651905991, 981.715747809821, 953.127134375762, 902.809201411559, 
907.462229880533, 921.595454423298, 919.198277947855, 904.969515265664, 
913.438353334218, 974.889830301362, 970.58615968713, 963.029605541189, 
915.889893279581, 908.147726780027, 942.742415528349, 979.939535179807, 
1153.51966568673, 1020.93502990084, 916.246150801212, 936.016759720656, 
914.4488779132, 962.397352323664, 986.957848140285, 985.364195731404, 
932.548910038465, 917.363220594089, 1085.89850605988, 1031.66330597084, 
1005.64983154588, 991.988118229379, 975.384741587994, 902.60240793926, 
907.989086075871, 923.287310593779, 912.878571722023, 904.107623756648, 
905.563259817979, 991.530368160932, 975.190212414434, 965.951810135591, 
915.334621878897, 910.857441830446, 936.093336975328, 972.074491630181, 
1106.77459226532, 993.45400883741, 951.911391767329, 927.688604859773, 
915.194279622847, 971.414103170297, 956.138106650696, 965.458656222347, 
944.097918792458, 947.157460200658, 1029.14870726558, 992.151638322899, 
954.129642526236, 981.48182339388, 968.10870393618, 906.941701681267, 
917.956716926981, 923.05649603805, 934.459432014683, 922.801034508827, 
920.724850575215, 981.478432929603, 1012.67364507927, 966.471299899978, 
912.640460101352, 906.34455384334, 923.738349342148, 970.987788560016, 
1210.42940542072, 975.753397539076, 911.747488522664, 928.34872697947, 
910.852487444859, 982.304620375747, 1028.52794775628, 913.408967803895, 
934.334726415048, 916.354017093653, 1036.08727658415, 974.408618327141, 
1004.71633485176, 995.142763465394, 987.00017276687, 906.86826042139, 
915.355833226192, 930.395950341189, 911.742114273539, 905.725754800821, 
912.194776217353, 979.488696998854, 998.766511802223, 968.436523426865, 
916.299279627464, 907.645161223541, 925.30056793674, 978.067851389738, 
1142.91274685359, 1001.53234105611, 916.842758017232, 924.907983103717, 
922.470305986631, 992.855613565408, 955.757560902304, 929.20232030375, 
943.535934437766, 923.58180450271, 1035.68330820385, 962.09501965608, 
1035.71434011945, 999.021624049638, 1037.74929152155, 904.65540329816, 
907.898446182233, 915.586965865012, 912.540978342886, 904.648950841522, 
910.146698786639, 970.655222414677, 969.045225438776, 961.588678057607, 
922.252864714149, 904.866433981365, 921.496292021655, 971.871605044557, 
1075.02261709497, 1018.63215987506, 925.837889075039, 937.313874872585, 
919.393974179406, 984.865480173384, 998.38173566307, 923.591922218561, 
935.764591123357, 914.144404904734, 1064.07484543951, 1009.55385037395, 
1003.07982307794, 1019.96770677478, 1023.43370663799, 1075.23648079772, 
918.40638740207, 930.381596850856, 911.431923384541, 908.158538518039, 
913.917742396318, 972.975539521988, 969.261073622988, 966.900828461146, 
912.922987528198, 906.204515258546, 917.349668426986, 965.167090686302, 
1033.80724280751, 1019.96323854891, 923.466492256566, 923.247012056591, 
911.896005256495, 983.55323734271, 987.195939413696, 948.013535459932, 
946.283282150572, 946.996017019961, 1018.55920835599, 983.790383328001, 
1044.1241515621, 1025.44806232873, 1013.07125415424, 936.438305947314, 
914.845558304809, 919.627558974215, 912.08306092659, 905.506361055768, 
925.863591354922, 980.84672626416, 1034.50509678374, 999.432501149952, 
914.013428128551, 903.385280147577, 914.982720974316, 987.521728519027, 
1026.27371444455, 1003.6659923071, 936.860089156893, 922.376363123921, 
909.301601087255, 949.125313633903, 983.891808931205, 928.514242776379, 
931.528375870523, 934.663002673557, 983.163630767407, 958.520107194186, 
1028.60002280789, 1027.26325499148, 1026.49504978946, 904.375575893285, 
912.523756638651, 919.179127414697, 913.641605762865, 905.043751380124, 
918.017612913947, 966.955539088111, 1083.03489991906, 982.779995986195, 
913.039005945342, 901.569366267589, 924.344189118069, 986.456388413752, 
1053.70140237407, 1012.4655295529, 918.216939699045, 924.376017342816, 
912.32335834515, 962.020663167786, 968.751653626515, 923.781426521514, 
934.702280304594, 945.072040784087, 972.171048113648, 980.160384144599, 
1029.12422797868, 1045.60159108586, 1069.71097019503, 904.989955563463, 
911.137606736246, 913.282276988181, 911.62618760385, 904.022814213797, 
917.471586361699, 969.239603596626, 1092.64417075988, 995.598256664543, 
911.352468377778, 903.930535551161, 934.598647851096, 968.529282541217, 
1014.22774561852, 992.123001836286, 955.008951781314, 928.638327604534, 
930.057703919378, 979.117036821698, 961.435436233545, 927.430280788518, 
933.188144311621, 938.849731346915, 975.793676023678, 984.576641002029, 
953.148108722352, 1025.14511979605, 987.536969976085, 904.469118373204, 
919.724696002539, 921.494112907094, 933.99081130992, 910.883621211755, 
919.830805764804, 973.217375644616, 1097.82345512272, 955.321702833728, 
914.950887550846, 907.869650845588, 930.21996042144, 988.365255219924, 
1072.82537699421, 941.505101156388, 912.978755227237, 924.00211814663, 
926.073413421038, 975.963524978988, 966.347030574186, 927.813889117707, 
938.87057229942, 937.20592642584, 1049.77079831674, 993.369595475566, 
941.988672609005, 1036.52896057029, 1025.79874961742, 909.778142305324, 
926.05520033663, 930.593948095488, 927.731349235947, 909.012240248148, 
918.177023640935, 965.119279536339, 1100.04708794994, 950.187396378294, 
913.95540287581, 908.285198789598, 928.585928045517, 1009.11449170465, 
1048.43494462072, 1070.81842375631, 919.615682872958, 927.180388372158, 
911.229890874478, 979.675336133848, 975.987038362197, 936.015685237366, 
944.935422587313, 934.084922337254, 1065.1158215132, 960.558846324124, 
954.324007605299, 1036.19891812821, 1000.52619841385, 904.622130948163, 
911.66456482634, 952.40730926852, 925.617846758624, 907.103270618455, 
921.775155162068, 962.660086144894, 1089.5423829539, 976.343009650736, 
917.002530477079, 905.207509685187, 920.30422426818, 985.37894037379, 
1032.27384329955, 974.803996932782)), class = "data.frame", row.names = c(85L, 
86L, 87L, 89L, 90L, 91L, 99L, 100L, 101L, 103L, 104L, 105L, 113L, 
114L, 115L, 117L, 118L, 119L, 127L, 128L, 129L, 131L, 132L, 133L, 
141L, 142L, 143L, 145L, 146L, 147L, 155L, 156L, 157L, 159L, 160L, 
161L, 169L, 170L, 171L, 173L, 174L, 175L, 183L, 184L, 185L, 187L, 
188L, 189L, 197L, 198L, 199L, 201L, 202L, 203L, 211L, 212L, 213L, 
215L, 216L, 217L, 225L, 226L, 227L, 229L, 230L, 231L, 239L, 240L, 
241L, 243L, 244L, 245L, 253L, 254L, 255L, 257L, 258L, 259L, 267L, 
268L, 269L, 271L, 272L, 273L, 615L, 616L, 617L, 619L, 620L, 622L, 
623L, 624L, 626L, 627L, 629L, 630L, 631L, 640L, 641L, 642L, 643L, 
644L, 645L, 647L, 648L, 649L, 651L, 652L, 653L, 655L, 656L, 657L, 
659L, 660L, 661L, 663L, 664L, 666L, 667L, 668L, 670L, 671L, 673L, 
674L, 675L, 684L, 685L, 686L, 687L, 688L, 689L, 691L, 692L, 693L, 
695L, 696L, 697L, 699L, 700L, 701L, 703L, 704L, 705L, 707L, 708L, 
710L, 711L, 712L, 714L, 715L, 717L, 718L, 719L, 728L, 729L, 730L, 
731L, 732L, 733L, 735L, 736L, 737L, 739L, 740L, 741L, 743L, 744L, 
745L, 747L, 748L, 749L, 751L, 752L, 754L, 755L, 756L, 758L, 759L, 
761L, 762L, 763L, 772L, 773L, 774L, 775L, 776L, 777L, 779L, 780L, 
781L, 783L, 784L, 785L, 787L, 788L, 789L, 791L, 792L, 793L, 795L, 
796L, 798L, 799L, 800L, 802L, 803L, 805L, 806L, 807L, 816L, 817L, 
818L, 819L, 820L, 821L, 823L, 824L, 825L, 827L, 828L, 829L, 831L, 
832L, 833L, 835L, 836L, 837L, 839L, 840L, 842L, 843L, 844L, 846L, 
847L, 849L, 850L, 851L, 860L, 861L, 862L, 863L, 864L, 865L, 867L, 
868L, 869L, 871L, 872L, 873L, 875L, 876L, 877L, 879L, 880L, 881L, 
883L, 884L, 886L, 887L, 888L, 890L, 891L, 893L, 894L, 895L, 904L, 
905L, 906L, 907L, 908L, 909L, 911L, 912L, 913L, 915L, 916L, 917L, 
919L, 920L, 921L, 923L, 924L, 925L, 927L, 928L, 930L, 931L, 932L, 
934L, 935L, 937L, 938L, 939L, 948L, 949L, 950L, 951L, 952L, 953L, 
955L, 956L, 957L, 959L, 960L, 961L, 963L, 964L, 965L, 967L, 968L, 
969L, 971L, 972L, 974L, 975L, 976L, 978L, 979L, 981L, 982L, 983L, 
992L, 993L, 994L, 995L, 996L, 997L, 999L, 1000L, 1001L, 1003L, 
1004L, 1005L, 1007L, 1008L, 1009L, 1011L, 1012L, 1013L, 1015L, 
1016L, 1018L, 1019L, 1020L, 1022L, 1023L, 1025L, 1026L, 1027L, 
1036L, 1037L, 1038L, 1039L, 1040L, 1041L, 1043L, 1044L, 1045L, 
1047L, 1048L, 1049L, 1051L, 1052L, 1053L, 1055L, 1056L, 1057L, 
1059L, 1060L, 1062L, 1063L, 1064L, 1066L, 1067L, 1069L, 1070L, 
1071L, 1080L, 1081L, 1082L, 1083L, 1084L, 1085L, 1087L, 1088L, 
1089L, 1091L, 1092L, 1093L, 1095L, 1096L, 1097L, 1099L, 1100L, 
1101L, 1103L, 1104L, 1106L, 1107L, 1108L, 1110L, 1111L, 1113L, 
1114L, 1115L, 1124L, 1125L, 1126L, 1127L, 1128L, 1129L, 1131L, 
1132L, 1133L, 1135L, 1136L, 1137L, 1139L, 1140L, 1141L, 1143L, 
1144L, 1145L, 1147L, 1148L, 1150L, 1151L, 1152L, 1154L, 1155L, 
1157L, 1158L, 1159L, 1168L, 1169L, 1170L, 1171L, 1172L, 1173L, 
1175L, 1176L, 1177L, 1179L, 1180L, 1181L, 1183L, 1184L, 1185L, 
1187L, 1188L, 1189L, 1191L, 1192L, 1194L, 1195L, 1196L, 1198L, 
1199L, 1201L, 1202L, 1203L, 1212L, 1213L, 1214L, 1215L, 1216L, 
1217L, 1219L, 1220L, 1221L, 1223L, 1224L, 1225L, 1227L, 1228L, 
1229L))

这是拟合模型所需的代码(我认为),并在加载上述数据后查看摘要:

library(lme4)
library(lmerTest)

fit1 <- lmer(Values ~ stimuli + timeperiod + scale(poly(distance.code,3,raw=FALSE))*habitat + wind.speed + (1|location.code), data=df, REML=FALSE)
fit2 <- lmer(Values ~ stimuli + timeperiod + distance.code + habitat + wind.speed + (1|location.code), data=ex.df, REML=FALSE)

summary(fit1)
#or
summary(fit2)

我认为这与我的数据结构和编程有关,但如果它实际上与统计数据有关,我很乐意将其 post 删除并重新 post在统计堆栈交换中。

感谢您的帮助!

注意:虽然您的问题是关于 lmer() 函数,但此答案也适用于 lm() 和其他适合线性模型的 R 函数。

R 中线性模型的系数估计值的呈现方式可能令人困惑。要了解发生了什么,您需要了解当预测变量是因子变量时 R 如何拟合线性模型。

R 线性模型中因子变量的系数

在查看因子变量之前,让我们先看一下预测变量连续的更直接的情况。在您的示例数据集中,预测变量之一是风速(连续变量)。估计系数约为-0.35。这很容易解释:对其他预测变量取平均值,风速每增加 1 km/h,您的响应值预计会减少 0.35。

但是如果预测变量是一个因素呢?分类变量不能增加或减少 1。相反,它可以采用多个离散值。因此,lmer()lm() 函数默认情况下会自动将因子变量编码为一组 so-called“虚拟变量”。虚拟变量是二进制的(它们可以取 0 或 1 的值)。如果因子变量有 n 个水平,则需要 n-1 个虚拟变量对其进行编码。参考水平或控制组就像截距一样。

对于栖息地变量,只有 2 个级别,因此您只有 1 个虚拟变量,如果栖息地不是 Forest,则为 0,如果是 Forest,则为 1。现在我们可以解释 -68.8 的系数估计值:相对于草地栖息地的参考水平,森林栖息地的响应平均值预计要少 68.8。你不需要第二个草地虚拟变量,因为你只需要估计一个系数来比较两个栖息地。

如果你有第三个栖息地,比方说湿地,就会有第二个虚拟变量,如果不是湿地则为 0,如果是湿地则为 1。系数估计湿地栖息地与草地栖息地的响应变量值之间存在预期差异。草地将作为所有系数的参考水平。

参考电平的默认设置

现在直接回答你为什么 habitatForest 是系数名称的问题。

因为默认情况下没有指定参考水平或控制组,所以因子水平排序中的第一个成为参考水平,所有其他水平都将与之进行比较。然后通过将变量的名称附加到与参考水平进行比较的水平的名称来命名系数。您的因素排序为草地第一,森林第二。所以系数是栖息地是森林栖息地与参考水平相比的影响,在这种情况下是草地。如果您切换栖息地因子水平排序,Forest 将是参考水平,您将获得 habitatGrassland 作为系数。 (请注意,默认因子水平排序是按字母顺序排列的,因此如果没有像您所做的那样专门对因子水平进行排序,默认情况下 Forest 将是参考水平)。

顺便说一下,您在问题中提供的两个链接(Phillip Alday 和 Tufts 的混合模型指南)实际上与您得到的输出类型相同。例如,在 Alday 的教程中,因子 recipe 有 3 个水平:A、B 和 C。固定效应摘要中有两个系数,recipeBrecipeC,就像您希望的那样期望使用 A 作为参考级别的虚拟编码。您可能会将固定效果摘要与他 post 中其他地方提供的方差分析 table 混淆。方差分析 table 只有一条线表示 recipe,它给出了由于 recipe(跨越 所有 水平)和总方差。因此,无论 recipe 有多少级别,这都只是一个比率。

进一步阅读

这不是全面讨论 R 线性模型中对比编码的地方。我在这里描述的虚拟编码(您可能还看到称为 one-hot 编码)只是一种方法.这些资源可能会有帮助: