如何使用管道运算符或相关的东西将管道分成两步?
How do I use the pipe operator or something related to break a pipeline into two steps?
有没有办法将其分为两步,以便 ml_logistic_regression() 可以分别应用于 flights_pipeline?
下面是管道的工作代码:
flights_pipeline <- ml_pipeline(sc) %>%
ft_dplyr_transformer(
tbl = df
) %>%
ft_binarizer(
input_col = "dep_delay",
output_col = "delayed",
threshold = 15
) %>%
ft_bucketizer(
input_col = "sched_dep_time",
output_col = "hours",
splits = c(400, 800, 1200, 1600, 2000, 2400)
) %>%
ft_r_formula(delayed ~ month + day + hours + distance) %>%
ml_logistic_regression()
这是我的尝试,我想把它分成两步 - 像这样:
flights_pipeline <- ml_pipeline(sc) %>%
ft_dplyr_transformer(
tbl = df
) %>%
ft_binarizer(
input_col = "dep_delay",
output_col = "delayed",
threshold = 15
) %>%
ft_bucketizer(
input_col = "sched_dep_time",
output_col = "hours",
splits = c(400, 800, 1200, 1600, 2000, 2400)
) %>%
ft_r_formula(delayed ~ month + day + hours + distance)
flights_pipeline_with_model <- flights_pipeline %>%
ml_logistic_regression()
根据描述和 OP 的第二个代码块,不清楚。如果打算在管道中创建一个对象并继续使用管道,也许 pipeR
可以帮助
library(pipeR)
ml_pipeline(sc) %>%
ft_dplyr_transformer(
tbl = df
) %>%
ft_binarizer(
input_col = "dep_delay",
output_col = "delayed",
threshold = 15
) %>%
ft_bucketizer(
input_col = "sched_dep_time",
output_col = "hours",
splits = c(400, 800, 1200, 1600, 2000, 2400)
) %>%
ft_r_formula(delayed ~ month + day + hours + distance) %>%
(~flights_pipeline) %>>%
ml_logistic_regression()
有没有办法将其分为两步,以便 ml_logistic_regression() 可以分别应用于 flights_pipeline?
下面是管道的工作代码:
flights_pipeline <- ml_pipeline(sc) %>%
ft_dplyr_transformer(
tbl = df
) %>%
ft_binarizer(
input_col = "dep_delay",
output_col = "delayed",
threshold = 15
) %>%
ft_bucketizer(
input_col = "sched_dep_time",
output_col = "hours",
splits = c(400, 800, 1200, 1600, 2000, 2400)
) %>%
ft_r_formula(delayed ~ month + day + hours + distance) %>%
ml_logistic_regression()
这是我的尝试,我想把它分成两步 - 像这样:
flights_pipeline <- ml_pipeline(sc) %>%
ft_dplyr_transformer(
tbl = df
) %>%
ft_binarizer(
input_col = "dep_delay",
output_col = "delayed",
threshold = 15
) %>%
ft_bucketizer(
input_col = "sched_dep_time",
output_col = "hours",
splits = c(400, 800, 1200, 1600, 2000, 2400)
) %>%
ft_r_formula(delayed ~ month + day + hours + distance)
flights_pipeline_with_model <- flights_pipeline %>%
ml_logistic_regression()
根据描述和 OP 的第二个代码块,不清楚。如果打算在管道中创建一个对象并继续使用管道,也许 pipeR
可以帮助
library(pipeR)
ml_pipeline(sc) %>%
ft_dplyr_transformer(
tbl = df
) %>%
ft_binarizer(
input_col = "dep_delay",
output_col = "delayed",
threshold = 15
) %>%
ft_bucketizer(
input_col = "sched_dep_time",
output_col = "hours",
splits = c(400, 800, 1200, 1600, 2000, 2400)
) %>%
ft_r_formula(delayed ~ month + day + hours + distance) %>%
(~flights_pipeline) %>>%
ml_logistic_regression()