如何获得 R 中探索性因素分析的初始共同性?
How can I get the initial communalities for an exploratory factor analysis in R?
我想获得 R 中探索性因素分析的初始公性
(即,由分析中包含的其他项目预测时每个项目的 R 平方)。
有没有办法用 jmv::efa 或 psych::fa 做到这一点?
我只看到唯一性,它告诉我因子提取后的共同性(1-唯一性)...
感谢您的考虑:)
数据集
这是我正在使用的数据的输入,以下称为hwk
:
hwk <- structure(list(V1 = structure(c(4, 4, 2, 2, 2, 2, 2, 2, 4, 4,
2, 3, 2, 3, 4, 2, 2, 2, 3, 3, 2, 3, 1, 3, 3, 3, 3, 4, 1, 2, 4,
1, 2, 3, 2, 3, 1, 1, 2, 2, 4, 3, 2, 1, 2, 3, 3, 4, 3, 3, 2, 3,
1, 4, 3, 2, 3, 4, 1, 3, 3, 3, 2, 2, 1, 2, 3, 4, 4, 2, 4, 3, 2,
3, 3, 3, 3, 2, 4, 3, 3, 3, 2, 2, 3, 4, 2, 4, 4, 2, 2, 3, 3), format.spss = "F8.0"),
V2 = structure(c(4, 4, 3, 4, 3, 4, 3, 2, 4, 1, 3, 3, 3, 4,
3, 3, 2, 3, 4, 3, 1, 4, 2, 3, 4, 2, 4, 3, 3, 2, 3, 2, 3,
3, 4, 3, 3, 3, 3, 3, 3, 2, 4, 2, 2, 2, 4, 3, 4, 4, 2, 4,
2, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4,
3, 4, 3, 3, 3, 4, 2, 4, 3, 4, 3, 3, 2, 3, 3, 4, 3, 4, 3,
4, 4, 3), format.spss = "F8.0"), V3 = structure(c(4, 4, 4,
4, 4, 4, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4), format.spss = "F8.0"),
V4 = structure(c(4, 4, 3, 4, 3, 4, 2, 1, 3, 2, 3, 1, 4, 4,
2, 3, 2, 2, 2, 4, 1, 2, 2, 2, 3, 2, 3, 2, 2, 1, 3, 1, 1,
2, 4, 1, 1, 2, 3, 2, 2, 1, 1, 1, 3, 2, 4, 3, 3, 3, 3, 3,
3, 4, 3, 1, 4, 3, 4, 3, 2, 3, 2, 1, 4, 1, 4, 1, 2, 4, 4,
4, 3, 3, 3, 2, 2, 1, 4, 3, 2, 3, 2, 1, 3, 4, 1, 2, 4, 3,
4, 2, 2), format.spss = "F8.0"), V5 = structure(c(3, 3, 3,
4, 3, 4, 3, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 3, 2,
2, 2, 2, 4, 2, 3, 2, 3, 4, 1, 4, 2, 3, 3, 2, 2, 3, 2, 2,
3, 3, 2, 3, 3, 3, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 3, 2, 3,
2, 2, 3, 3, 3, 2, 3, 3, 3, 4, 3, 2, 3, 3, 3, 3, 3, 3, 4,
3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 4, 3, 3), format.spss = "F8.0"),
V6 = structure(c(4, 4, 3, 4, 3, 4, 4, 1, 3, 3, 3, 3, 2, 3,
4, 2, 4, 3, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 4, 3, 4, 4, 3,
3, 3, 4, 2, 2, 3, 3, 3, 4, 2, 4, 3, 4, 4, 4, 3, 4, 2, 4,
3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 1, 4, 4, 4, 4, 4, 4,
4, 3, 4, 4, 4, 4, 2, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3,
4, 4, 4), format.spss = "F8.0"), V7 = structure(c(4, 4, 2,
4, 2, 4, 4, 3, 3, 3, 2, 2, 4, 4, 3, 3, 1, 4, 3, 3, 1, 2,
4, 3, 4, 2, 4, 4, 3, 3, 2, 2, 3, 2, 4, 3, 3, 3, 3, 3, 3,
1, 4, 3, 2, 2, 4, 3, 4, 4, 2, 4, 2, 3, 4, 3, 3, 3, 4, 3,
4, 4, 3, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 3, 3, 4, 3, 4,
3, 3, 3, 3, 2, 2, 4, 4, 4, 4, 2, 4, 4, 3), format.spss = "F8.0"),
V8 = structure(c(4, 4, 2, 1, 2, 1, 1, 1, 3, 3, 2, 3, 2, 3,
4, 2, 2, 2, 3, 3, 2, 3, 1, 3, 3, 3, 3, 4, 1, 2, 4, 1, 2,
3, 2, 3, 1, 1, 2, 2, 3, 1, 1, 1, 2, 3, 3, 4, 3, 3, 2, 3,
1, 3, 4, 2, 3, 4, 1, 3, 3, 3, 2, 2, 1, 2, 3, 4, 4, 2, 4,
3, 4, 4, 4, 4, 3, 2, 4, 3, 3, 3, 2, 2, 3, 4, 2, 4, 4, 2,
1, 3, 4), format.spss = "F8.0"), V9 = structure(c(4, 4, 4,
4, 4, 4, 4, 4, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 2, 3, 4, 4,
4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 3, 2, 4, 3, 4,
4, 4, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 4, 3, 4, 3, 2, 4,
3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 4, 3, 4, 3, 4, 4, 4,
4, 3, 4, 4, 4, 4, 4, 3, 2, 4, 4, 4, 4, 4), format.spss = "F8.0"),
V10 = structure(c(4, 4, 2, 4, 2, 4, 3, 2, 3, 3, 3, 2, 4,
4, 2, 2, 1, 3, 4, 4, 1, 4, 2, 3, 3, 2, 4, 3, 2, 3, 3, 1,
3, 2, 4, 3, 2, 3, 3, 3, 3, 1, 2, 4, 2, 3, 4, 4, 3, 3, 2,
4, 2, 4, 3, 3, 4, 3, 4, 3, 4, 4, 4, 1, 4, 3, 3, 4, 3, 4,
4, 3, 3, 3, 3, 3, 4, 1, 4, 3, 3, 3, 3, 2, 3, 4, 4, 2, 4,
2, 4, 4, 3), format.spss = "F8.0"), V11 = structure(c(3,
3, 1, 4, 1, 4, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 2, 2, 1,
2, 3, 1, 2, 3, 3, 2, 1, 2, 2, 2, 3, 2, 2, 3, 2, 1, 2, 2,
1, 1, 4, 3, 1, 3, 2, 3, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 3,
2, 2, 2, 2, 2, 2, 1, 1, 1, 3, 3, 4, 2, 1, 2, 2, 3, 3, 3,
3, 4, 3, 2, 3, 3, 2, 2, 2, 2, 1, 3, 1, 4, 1, 3), format.spss = "F8.0"),
V12 = structure(c(4, 4, 3, 2, 3, 2, 3, 1, 3, 3, 3, 3, 2,
3, 3, 2, 4, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 3, 4, 3, 4, 4,
3, 3, 3, 4, 2, 2, 3, 3, 3, 4, 2, 4, 3, 4, 4, 4, 3, 4, 2,
4, 3, 3, 3, 3, 4, 3, 3, 2, 2, 1, 1, 3, 1, 4, 4, 4, 4, 4,
4, 4, 3, 3, 2, 2, 2, 2, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
3, 2, 3, 4), format.spss = "F8.0")), class = c("tbl_df",
"tbl", "data.frame"), row.names = c(NA, -93L))
全民教育
我在初步回答后做了一些研究,似乎有一个名为 EFA 工具的软件包。有一个名为 EFA
的函数允许您指定您想要初始社区。首先,运行 图书馆和下面的 EFA 本身:
# Load EFA Tools library:
library(EFAtools)
# Run EFA:
hwkfa <- EFA(hwk,
n_factors = 3,
start_method = "psych",
method = "PAF",
rotation = "promax",
init_comm = "smc", # selected initial communalities
type = "SPSS")
获得初始共同点:
然后您可以使用以下代码简单地 select 初始社区:
hwkfa$h2_init
这会为您提供以下输出向量:
V1 V2 V3 V4 V5 V6 V7
0.8034001 0.5583605 0.5487691 0.3255253 0.5685402 0.4643686 0.5227481
V8 V9 V10 V11 V12
0.8050573 0.3474202 0.5564858 0.3496354 0.3783390
我 运行 在 SPSS 中做了同样的事情并得到了匹配值:
正如您所注意到的,因子分析中的初始公性是每个变量与其余变量的平方多重相关 (SMC)。以 built-in attitude
数据集为例,无需额外的软件包即可轻松计算它们:
1 - 1 / diag(solve(cor(attitude)))
rating complaints privileges learning raises critical advance
0.7326020 0.7700868 0.3831176 0.6194561 0.6770498 0.1881465 0.5186447
为了方便起见,psych
软件包包含 smc()
函数:
psych::smc(attitude)
rating complaints privileges learning raises critical advance
0.7326020 0.7700868 0.3831176 0.6194561 0.6770498 0.1881465 0.5186447
我想获得 R 中探索性因素分析的初始公性 (即,由分析中包含的其他项目预测时每个项目的 R 平方)。
有没有办法用 jmv::efa 或 psych::fa 做到这一点?
我只看到唯一性,它告诉我因子提取后的共同性(1-唯一性)...
感谢您的考虑:)
数据集
这是我正在使用的数据的输入,以下称为hwk
:
hwk <- structure(list(V1 = structure(c(4, 4, 2, 2, 2, 2, 2, 2, 4, 4,
2, 3, 2, 3, 4, 2, 2, 2, 3, 3, 2, 3, 1, 3, 3, 3, 3, 4, 1, 2, 4,
1, 2, 3, 2, 3, 1, 1, 2, 2, 4, 3, 2, 1, 2, 3, 3, 4, 3, 3, 2, 3,
1, 4, 3, 2, 3, 4, 1, 3, 3, 3, 2, 2, 1, 2, 3, 4, 4, 2, 4, 3, 2,
3, 3, 3, 3, 2, 4, 3, 3, 3, 2, 2, 3, 4, 2, 4, 4, 2, 2, 3, 3), format.spss = "F8.0"),
V2 = structure(c(4, 4, 3, 4, 3, 4, 3, 2, 4, 1, 3, 3, 3, 4,
3, 3, 2, 3, 4, 3, 1, 4, 2, 3, 4, 2, 4, 3, 3, 2, 3, 2, 3,
3, 4, 3, 3, 3, 3, 3, 3, 2, 4, 2, 2, 2, 4, 3, 4, 4, 2, 4,
2, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4,
3, 4, 3, 3, 3, 4, 2, 4, 3, 4, 3, 3, 2, 3, 3, 4, 3, 4, 3,
4, 4, 3), format.spss = "F8.0"), V3 = structure(c(4, 4, 4,
4, 4, 4, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4), format.spss = "F8.0"),
V4 = structure(c(4, 4, 3, 4, 3, 4, 2, 1, 3, 2, 3, 1, 4, 4,
2, 3, 2, 2, 2, 4, 1, 2, 2, 2, 3, 2, 3, 2, 2, 1, 3, 1, 1,
2, 4, 1, 1, 2, 3, 2, 2, 1, 1, 1, 3, 2, 4, 3, 3, 3, 3, 3,
3, 4, 3, 1, 4, 3, 4, 3, 2, 3, 2, 1, 4, 1, 4, 1, 2, 4, 4,
4, 3, 3, 3, 2, 2, 1, 4, 3, 2, 3, 2, 1, 3, 4, 1, 2, 4, 3,
4, 2, 2), format.spss = "F8.0"), V5 = structure(c(3, 3, 3,
4, 3, 4, 3, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 3, 2,
2, 2, 2, 4, 2, 3, 2, 3, 4, 1, 4, 2, 3, 3, 2, 2, 3, 2, 2,
3, 3, 2, 3, 3, 3, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 3, 2, 3,
2, 2, 3, 3, 3, 2, 3, 3, 3, 4, 3, 2, 3, 3, 3, 3, 3, 3, 4,
3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 4, 3, 3), format.spss = "F8.0"),
V6 = structure(c(4, 4, 3, 4, 3, 4, 4, 1, 3, 3, 3, 3, 2, 3,
4, 2, 4, 3, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 4, 3, 4, 4, 3,
3, 3, 4, 2, 2, 3, 3, 3, 4, 2, 4, 3, 4, 4, 4, 3, 4, 2, 4,
3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 1, 4, 4, 4, 4, 4, 4,
4, 3, 4, 4, 4, 4, 2, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3,
4, 4, 4), format.spss = "F8.0"), V7 = structure(c(4, 4, 2,
4, 2, 4, 4, 3, 3, 3, 2, 2, 4, 4, 3, 3, 1, 4, 3, 3, 1, 2,
4, 3, 4, 2, 4, 4, 3, 3, 2, 2, 3, 2, 4, 3, 3, 3, 3, 3, 3,
1, 4, 3, 2, 2, 4, 3, 4, 4, 2, 4, 2, 3, 4, 3, 3, 3, 4, 3,
4, 4, 3, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 3, 3, 4, 3, 4,
3, 3, 3, 3, 2, 2, 4, 4, 4, 4, 2, 4, 4, 3), format.spss = "F8.0"),
V8 = structure(c(4, 4, 2, 1, 2, 1, 1, 1, 3, 3, 2, 3, 2, 3,
4, 2, 2, 2, 3, 3, 2, 3, 1, 3, 3, 3, 3, 4, 1, 2, 4, 1, 2,
3, 2, 3, 1, 1, 2, 2, 3, 1, 1, 1, 2, 3, 3, 4, 3, 3, 2, 3,
1, 3, 4, 2, 3, 4, 1, 3, 3, 3, 2, 2, 1, 2, 3, 4, 4, 2, 4,
3, 4, 4, 4, 4, 3, 2, 4, 3, 3, 3, 2, 2, 3, 4, 2, 4, 4, 2,
1, 3, 4), format.spss = "F8.0"), V9 = structure(c(4, 4, 4,
4, 4, 4, 4, 4, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 2, 3, 4, 4,
4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 3, 2, 4, 3, 4,
4, 4, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 4, 3, 4, 3, 2, 4,
3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 4, 3, 4, 3, 4, 4, 4,
4, 3, 4, 4, 4, 4, 4, 3, 2, 4, 4, 4, 4, 4), format.spss = "F8.0"),
V10 = structure(c(4, 4, 2, 4, 2, 4, 3, 2, 3, 3, 3, 2, 4,
4, 2, 2, 1, 3, 4, 4, 1, 4, 2, 3, 3, 2, 4, 3, 2, 3, 3, 1,
3, 2, 4, 3, 2, 3, 3, 3, 3, 1, 2, 4, 2, 3, 4, 4, 3, 3, 2,
4, 2, 4, 3, 3, 4, 3, 4, 3, 4, 4, 4, 1, 4, 3, 3, 4, 3, 4,
4, 3, 3, 3, 3, 3, 4, 1, 4, 3, 3, 3, 3, 2, 3, 4, 4, 2, 4,
2, 4, 4, 3), format.spss = "F8.0"), V11 = structure(c(3,
3, 1, 4, 1, 4, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 2, 2, 1,
2, 3, 1, 2, 3, 3, 2, 1, 2, 2, 2, 3, 2, 2, 3, 2, 1, 2, 2,
1, 1, 4, 3, 1, 3, 2, 3, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 3,
2, 2, 2, 2, 2, 2, 1, 1, 1, 3, 3, 4, 2, 1, 2, 2, 3, 3, 3,
3, 4, 3, 2, 3, 3, 2, 2, 2, 2, 1, 3, 1, 4, 1, 3), format.spss = "F8.0"),
V12 = structure(c(4, 4, 3, 2, 3, 2, 3, 1, 3, 3, 3, 3, 2,
3, 3, 2, 4, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 3, 4, 3, 4, 4,
3, 3, 3, 4, 2, 2, 3, 3, 3, 4, 2, 4, 3, 4, 4, 4, 3, 4, 2,
4, 3, 3, 3, 3, 4, 3, 3, 2, 2, 1, 1, 3, 1, 4, 4, 4, 4, 4,
4, 4, 3, 3, 2, 2, 2, 2, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
3, 2, 3, 4), format.spss = "F8.0")), class = c("tbl_df",
"tbl", "data.frame"), row.names = c(NA, -93L))
全民教育
我在初步回答后做了一些研究,似乎有一个名为 EFA 工具的软件包。有一个名为 EFA
的函数允许您指定您想要初始社区。首先,运行 图书馆和下面的 EFA 本身:
# Load EFA Tools library:
library(EFAtools)
# Run EFA:
hwkfa <- EFA(hwk,
n_factors = 3,
start_method = "psych",
method = "PAF",
rotation = "promax",
init_comm = "smc", # selected initial communalities
type = "SPSS")
获得初始共同点:
然后您可以使用以下代码简单地 select 初始社区:
hwkfa$h2_init
这会为您提供以下输出向量:
V1 V2 V3 V4 V5 V6 V7
0.8034001 0.5583605 0.5487691 0.3255253 0.5685402 0.4643686 0.5227481
V8 V9 V10 V11 V12
0.8050573 0.3474202 0.5564858 0.3496354 0.3783390
我 运行 在 SPSS 中做了同样的事情并得到了匹配值:
正如您所注意到的,因子分析中的初始公性是每个变量与其余变量的平方多重相关 (SMC)。以 built-in attitude
数据集为例,无需额外的软件包即可轻松计算它们:
1 - 1 / diag(solve(cor(attitude)))
rating complaints privileges learning raises critical advance
0.7326020 0.7700868 0.3831176 0.6194561 0.6770498 0.1881465 0.5186447
为了方便起见,psych
软件包包含 smc()
函数:
psych::smc(attitude)
rating complaints privileges learning raises critical advance
0.7326020 0.7700868 0.3831176 0.6194561 0.6770498 0.1881465 0.5186447