Plotly Python 使用 dropMenu 更新图形
Plotly Python update figure with dropMenu
我目前正在使用 plotly 我有一个名为 plotChart 的函数,它将数据框作为输入并绘制烛台图表。我试图找出一种方法将数据帧列表传递给函数 plotChart 并使用 plotly 下拉菜单按股票名称显示输入列表上的选项。下拉菜单将包含数据框列表,当单击一个选项时,它将更新 plotly 中的图形,以便执行此操作。下面是我必须绘制单个数据帧的代码
def make_multi_plot(df):
fig = make_subplots(rows=2, cols=2,
shared_xaxes=True,
vertical_spacing=0.03,
subplot_titles=('OHLC', 'Volume Profile'),
row_width=[0.2, 0.7])
for s in df.name.unique():
trace1 = go.Candlestick(
x=df.loc[df.name.isin([s])].time,
open=df.loc[df.name.isin([s])].open,
high=df.loc[df.name.isin([s])].high,
low=df.loc[df.name.isin([s])].low,
close=df.loc[df.name.isin([s])].close,
name = s)
fig.append_trace(trace1,1,1)
fig.append_trace(go.Scatter(x=df.loc[df.name.isin([s])].time, y=df.loc[df.name.isin([s])].BbandsMid, mode='lines',name='MidBollinger'),1,1)
fig.append_trace(go.Scatter(x=df.loc[df.name.isin([s])].time, y=df.loc[df.name.isin([s])].BbandsUpp, mode='lines',name='UpperBollinger'),1,1)
fig.append_trace(go.Scatter(x=df.loc[df.name.isin([s])].time, y=df.loc[df.name.isin([s])].BbandsLow, mode='lines',name='LowerBollinger'),1,1)
fig.append_trace(go.Scatter(x=df.loc[df.name.isin([s])].time, y=df.loc[df.name.isin([s])].vwap, mode='lines',name='VWAP'),1,1)
fig.append_trace(go.Scatter(x=df.loc[df.name.isin([s])].time, y=df.loc[df.name.isin([s])].STDEV_1, mode='lines',name='UPPERVWAP'),1,1)
fig.append_trace(go.Scatter(x=df.loc[df.name.isin([s])].time, y=df.loc[df.name.isin([s])].STDEV_N1, mode='lines',name='LOWERVWAP'),1,1)
fig.append_trace(go.Scatter(x=df.loc[df.name.isin([s])].time, y=df.loc[df.name.isin([s])].KcMid, mode='lines',name='KcMid'),1,1)
fig.append_trace(go.Scatter(x=df.loc[df.name.isin([s])].time, y=df.loc[df.name.isin([s])].KcUpper, mode='lines',name='KcUpper'),1,1)
fig.append_trace(go.Scatter(x=df.loc[df.name.isin([s])].time, y=df.loc[df.name.isin([s])].KcLow, mode='lines',name='KcLow'),1,1)
trace2 = go.Bar(
x=df.loc[df.name.isin([s])].time,
y=df.loc[df.name.isin([s])].volume,
name = s)
fig.append_trace(trace2,2,1)
# fig.update_layout(title_text=s)
graph_cnt=len(fig.data)
tr = 11
symbol_cnt =len(df.name.unique())
for g in range(tr, graph_cnt):
fig.update_traces(visible=False, selector=g)
#print(g)
def create_layout_button(k, symbol):
start, end = tr*k, tr*k+2
visibility = [False]*tr*symbol_cnt
visibility[start:end] = [True,True,True,True,True,True,True,True,True,True,True]
return dict(label = symbol,
method = 'restyle',
args = [{'visible': visibility[:-1],
'title': symbol,
'showlegend': False}])
fig.update(layout_xaxis_rangeslider_visible=False)
fig.update_layout(
updatemenus=[go.layout.Updatemenu(
active = 0,
buttons = [create_layout_button(k, s) for k, s in enumerate(df.name.unique())]
)
])
fig.show()
我正在尝试向图中添加注释,它对于每个图表都会有所不同,下面是我为单个图表设置的方式 df['superTrend'] 是一个布尔列
for i in range(df.first_valid_index()+1,len(df.index)):
prev = i - 1
if df['superTrend'][i] != df['superTrend'][prev] and not np.isnan(df['superTrend'][i]) :
#print(i,df['inUptrend'][i])
fig.add_annotation(x=df['time'][i], y=df['open'][i],
text= 'Buy' if df['superTrend'][i] else 'Sell',
showarrow=True,
arrowhead=6,
font=dict(
#family="Courier New, monospace",
size=20,
#color="#ffffff"
),)
我将 plotly community 中的示例改编为您的示例并创建了代码。创建的重点是为每个子图创建数据,然后通过按钮在它们之间切换。样本数据是使用美国股票的代表性公司创建的。一个问题是标题已设置但未显示。我们目前正在调查此问题。
import yfinance as yf
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import pandas as pd
symbols = ['AAPL','GOOG','TSLA']
stocks = pd.DataFrame()
for s in symbols:
data = yf.download(s, start="2021-01-01", end="2021-12-31")
data['mean'] = data['Close'].rolling(20).mean()
data['std'] = data['Close'].rolling(20).std()
data['upperBand'] = data['mean'] + (data['std'] * 2)
data.reset_index(inplace=True)
data['symbol'] = s
stocks = stocks.append(data, ignore_index=True)
def make_multi_plot(df):
fig = make_subplots(rows=2, cols=1,
shared_xaxes=True,
vertical_spacing=0.03,
subplot_titles=('OHLC', 'Volume Profile'),
row_width=[0.2, 0.7])
for s in df.symbol.unique():
trace1 = go.Candlestick(
x=df.loc[df.symbol.isin([s])].Date,
open=df.loc[df.symbol.isin([s])].Open,
high=df.loc[df.symbol.isin([s])].High,
low=df.loc[df.symbol.isin([s])].Low,
close=df.loc[df.symbol.isin([s])].Close,
name=s)
fig.append_trace(trace1,1,1)
trace2 = go.Scatter(
x=df.loc[df.symbol.isin([s])].Date,
y=df.loc[df.symbol.isin([s])].upperBand,
name=s)
fig.append_trace(trace2,1,1)
trace3 = go.Bar(
x=df.loc[df.symbol.isin([s])].Date,
y=df.loc[df.symbol.isin([s])].Volume,
name=s)
fig.append_trace(trace3,2,1)
# fig.update_layout(title_text=s)
# Calculate the total number of graphs
graph_cnt=len(fig.data)
# Number of Symbols
symbol_cnt =len(df.symbol.unique())
# Number of graphs per symbol
tr = 3
# Hide setting for initial display
for g in range(tr, graph_cnt):
fig.update_traces(visible=False, selector=g)
def create_layout_button(k, symbol):
start, end = tr*k, tr*k+2
visibility = [False]*tr*symbol_cnt
# Number of graphs per symbol, so if you add a graph, add True.
visibility[start:end] = [True,True,True]
return dict(label = symbol,
method = 'restyle',
args = [{'visible': visibility[:-1],
'title': symbol,
'showlegend': True}])
fig.update(layout_xaxis_rangeslider_visible=False)
fig.update_layout(
updatemenus=[go.layout.Updatemenu(
active = 0,
buttons = [create_layout_button(k, s) for k, s in enumerate(df.symbol.unique())]
)
])
fig.show()
return fig.layout
make_multi_plot(stocks)
我目前正在使用 plotly 我有一个名为 plotChart 的函数,它将数据框作为输入并绘制烛台图表。我试图找出一种方法将数据帧列表传递给函数 plotChart 并使用 plotly 下拉菜单按股票名称显示输入列表上的选项。下拉菜单将包含数据框列表,当单击一个选项时,它将更新 plotly 中的图形,以便执行此操作。下面是我必须绘制单个数据帧的代码
def make_multi_plot(df):
fig = make_subplots(rows=2, cols=2,
shared_xaxes=True,
vertical_spacing=0.03,
subplot_titles=('OHLC', 'Volume Profile'),
row_width=[0.2, 0.7])
for s in df.name.unique():
trace1 = go.Candlestick(
x=df.loc[df.name.isin([s])].time,
open=df.loc[df.name.isin([s])].open,
high=df.loc[df.name.isin([s])].high,
low=df.loc[df.name.isin([s])].low,
close=df.loc[df.name.isin([s])].close,
name = s)
fig.append_trace(trace1,1,1)
fig.append_trace(go.Scatter(x=df.loc[df.name.isin([s])].time, y=df.loc[df.name.isin([s])].BbandsMid, mode='lines',name='MidBollinger'),1,1)
fig.append_trace(go.Scatter(x=df.loc[df.name.isin([s])].time, y=df.loc[df.name.isin([s])].BbandsUpp, mode='lines',name='UpperBollinger'),1,1)
fig.append_trace(go.Scatter(x=df.loc[df.name.isin([s])].time, y=df.loc[df.name.isin([s])].BbandsLow, mode='lines',name='LowerBollinger'),1,1)
fig.append_trace(go.Scatter(x=df.loc[df.name.isin([s])].time, y=df.loc[df.name.isin([s])].vwap, mode='lines',name='VWAP'),1,1)
fig.append_trace(go.Scatter(x=df.loc[df.name.isin([s])].time, y=df.loc[df.name.isin([s])].STDEV_1, mode='lines',name='UPPERVWAP'),1,1)
fig.append_trace(go.Scatter(x=df.loc[df.name.isin([s])].time, y=df.loc[df.name.isin([s])].STDEV_N1, mode='lines',name='LOWERVWAP'),1,1)
fig.append_trace(go.Scatter(x=df.loc[df.name.isin([s])].time, y=df.loc[df.name.isin([s])].KcMid, mode='lines',name='KcMid'),1,1)
fig.append_trace(go.Scatter(x=df.loc[df.name.isin([s])].time, y=df.loc[df.name.isin([s])].KcUpper, mode='lines',name='KcUpper'),1,1)
fig.append_trace(go.Scatter(x=df.loc[df.name.isin([s])].time, y=df.loc[df.name.isin([s])].KcLow, mode='lines',name='KcLow'),1,1)
trace2 = go.Bar(
x=df.loc[df.name.isin([s])].time,
y=df.loc[df.name.isin([s])].volume,
name = s)
fig.append_trace(trace2,2,1)
# fig.update_layout(title_text=s)
graph_cnt=len(fig.data)
tr = 11
symbol_cnt =len(df.name.unique())
for g in range(tr, graph_cnt):
fig.update_traces(visible=False, selector=g)
#print(g)
def create_layout_button(k, symbol):
start, end = tr*k, tr*k+2
visibility = [False]*tr*symbol_cnt
visibility[start:end] = [True,True,True,True,True,True,True,True,True,True,True]
return dict(label = symbol,
method = 'restyle',
args = [{'visible': visibility[:-1],
'title': symbol,
'showlegend': False}])
fig.update(layout_xaxis_rangeslider_visible=False)
fig.update_layout(
updatemenus=[go.layout.Updatemenu(
active = 0,
buttons = [create_layout_button(k, s) for k, s in enumerate(df.name.unique())]
)
])
fig.show()
我正在尝试向图中添加注释,它对于每个图表都会有所不同,下面是我为单个图表设置的方式 df['superTrend'] 是一个布尔列
for i in range(df.first_valid_index()+1,len(df.index)):
prev = i - 1
if df['superTrend'][i] != df['superTrend'][prev] and not np.isnan(df['superTrend'][i]) :
#print(i,df['inUptrend'][i])
fig.add_annotation(x=df['time'][i], y=df['open'][i],
text= 'Buy' if df['superTrend'][i] else 'Sell',
showarrow=True,
arrowhead=6,
font=dict(
#family="Courier New, monospace",
size=20,
#color="#ffffff"
),)
我将 plotly community 中的示例改编为您的示例并创建了代码。创建的重点是为每个子图创建数据,然后通过按钮在它们之间切换。样本数据是使用美国股票的代表性公司创建的。一个问题是标题已设置但未显示。我们目前正在调查此问题。
import yfinance as yf
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import pandas as pd
symbols = ['AAPL','GOOG','TSLA']
stocks = pd.DataFrame()
for s in symbols:
data = yf.download(s, start="2021-01-01", end="2021-12-31")
data['mean'] = data['Close'].rolling(20).mean()
data['std'] = data['Close'].rolling(20).std()
data['upperBand'] = data['mean'] + (data['std'] * 2)
data.reset_index(inplace=True)
data['symbol'] = s
stocks = stocks.append(data, ignore_index=True)
def make_multi_plot(df):
fig = make_subplots(rows=2, cols=1,
shared_xaxes=True,
vertical_spacing=0.03,
subplot_titles=('OHLC', 'Volume Profile'),
row_width=[0.2, 0.7])
for s in df.symbol.unique():
trace1 = go.Candlestick(
x=df.loc[df.symbol.isin([s])].Date,
open=df.loc[df.symbol.isin([s])].Open,
high=df.loc[df.symbol.isin([s])].High,
low=df.loc[df.symbol.isin([s])].Low,
close=df.loc[df.symbol.isin([s])].Close,
name=s)
fig.append_trace(trace1,1,1)
trace2 = go.Scatter(
x=df.loc[df.symbol.isin([s])].Date,
y=df.loc[df.symbol.isin([s])].upperBand,
name=s)
fig.append_trace(trace2,1,1)
trace3 = go.Bar(
x=df.loc[df.symbol.isin([s])].Date,
y=df.loc[df.symbol.isin([s])].Volume,
name=s)
fig.append_trace(trace3,2,1)
# fig.update_layout(title_text=s)
# Calculate the total number of graphs
graph_cnt=len(fig.data)
# Number of Symbols
symbol_cnt =len(df.symbol.unique())
# Number of graphs per symbol
tr = 3
# Hide setting for initial display
for g in range(tr, graph_cnt):
fig.update_traces(visible=False, selector=g)
def create_layout_button(k, symbol):
start, end = tr*k, tr*k+2
visibility = [False]*tr*symbol_cnt
# Number of graphs per symbol, so if you add a graph, add True.
visibility[start:end] = [True,True,True]
return dict(label = symbol,
method = 'restyle',
args = [{'visible': visibility[:-1],
'title': symbol,
'showlegend': True}])
fig.update(layout_xaxis_rangeslider_visible=False)
fig.update_layout(
updatemenus=[go.layout.Updatemenu(
active = 0,
buttons = [create_layout_button(k, s) for k, s in enumerate(df.symbol.unique())]
)
])
fig.show()
return fig.layout
make_multi_plot(stocks)