对组中的行求和,从出现特定值时开始
Sum rows in a group, starting when a specific value occurs
我想将一列的值累加到组的末尾,尽管在另一列中出现特定值时开始添加。我只对组内特定值的第一个实例感兴趣。因此,如果该值在组内再次出现,则添加列应继续添加值。我知道这听起来像是一个相当奇怪的问题,所以希望示例 table 有意义。
下面的数据框是我现在的:
> df = data.frame(group = c(1,1,1,1,2,2,2,2,2,3,3,3,4,4,4),numToAdd = c(1,1,3,2,4,2,1,3,2,1,2,1,2,3,2),occurs = c(0,0,1,0,0,1,0,0,0,0,1,1,0,0,0))
> df
group numToAdd occurs
1 1 1 0
2 1 1 0
3 1 3 1
4 1 2 0
5 2 4 0
6 2 2 1
7 2 1 0
8 2 3 0
9 2 2 0
10 3 1 0
11 3 2 1
12 3 1 1
13 4 2 0
14 4 3 0
15 4 2 0
因此,每当组中出现 1 时,我想要 numToAdd 列中值的累加和,直到新组开始。这看起来像下面这样:
> finalDF = data.frame(group = c(1,1,1,1,2,2,2,2,2,3,3,3,4,4,4),numToAdd = c(1,1,3,2,4,2,1,3,2,1,2,1,2,3,2),occurs = c(0,0,1,0,0,1,0,0,0,0,1,1,0,0,0),added = c(0,0,3,5,0,2,3,6,8,0,2,3,0,0,0))
> finalDF
group numToAdd occurs added
1 1 1 0 0
2 1 1 0 0
3 1 3 1 3
4 1 2 0 5
5 2 4 0 0
6 2 2 1 2
7 2 1 0 3
8 2 3 0 6
9 2 2 0 8
10 3 1 0 0
11 3 2 1 2
12 3 1 1 3
13 4 2 0 0
14 4 3 0 0
15 4 2 0 0
因此,添加的列为 0,直到组内出现 1,然后累加 numToAdd 的值,直到移动到新组,将添加的列变回 0。在第三组中,值为 1第二次找到,但累计和仍在继续。此外,在第 4 组中,从未找到值 1,因此添加列中的值仍为 0。
我玩过 dplyr,但无法正常工作。下面的解法只输出总和,不输出每行递增的累计数
library(dplyr)
df =
df %>%
mutate(added=ifelse(occurs == 1,cumsum(numToAdd),0)) %>%
group_by(group)
尝试
df %>%
group_by(group) %>%
mutate(added= cumsum(numToAdd*cummax(occurs)))
# group numToAdd occurs added
# 1 1 1 0 0
# 2 1 1 0 0
# 3 1 3 1 3
# 4 1 2 0 5
# 5 2 4 0 0
# 6 2 2 1 2
# 7 2 1 0 3
# 8 2 3 0 6
# 9 2 2 0 8
# 10 3 1 0 0
# 11 3 2 1 2
# 12 3 1 1 3
# 13 4 2 0 0
# 14 4 3 0 0
# 15 4 2 0 0
或使用data.table
library(data.table)#v1.9.5+
i1 <-setDT(df)[, .I[(rleid(occurs) + (occurs>0))>1], group]$V1
df[, added:=0][i1, added:=cumsum(numToAdd), by = group]
或与 dplyr
中类似的选项
setDT(df)[,added := cumsum(numToAdd * cummax(occurs)) , by = group]
您可以在 base R 中使用 split-apply-combine 类似的东西:
df$added <- unlist(lapply(split(df, df$group), function(x) {
y <- rep(0, nrow(x))
pos <- cumsum(x$occurs) > 0
y[pos] <- cumsum(x$numToAdd[pos])
y
}))
df
# group numToAdd occurs added
# 1 1 1 0 0
# 2 1 1 0 0
# 3 1 3 1 3
# 4 1 2 0 5
# 5 2 4 0 0
# 6 2 2 1 2
# 7 2 1 0 3
# 8 2 3 0 6
# 9 2 2 0 8
# 10 3 1 0 0
# 11 3 2 1 2
# 12 3 1 1 3
# 13 4 2 0 0
# 14 4 3 0 0
# 15 4 2 0 0
要添加另一个 base R
方法:
df$added <- unlist(lapply(split(df, df$group), function(x) {
c(x[,'occurs'][cumsum(x[,'occurs']) == 0L],
cumsum(x[,'numToAdd'][cumsum(x[,'occurs']) != 0L]))
}))
# group numToAdd occurs added
# 1 1 1 0 0
# 2 1 1 0 0
# 3 1 3 1 3
# 4 1 2 0 5
# 5 2 4 0 0
# 6 2 2 1 2
# 7 2 1 0 3
# 8 2 3 0 6
# 9 2 2 0 8
# 10 3 1 0 0
# 11 3 2 1 2
# 12 3 1 1 3
# 13 4 2 0 0
# 14 4 3 0 0
# 15 4 2 0 0
另一个基地R:
df$added <- unlist(lapply(split(df,df$group),function(x){
cumsum((cumsum(x$occurs) > 0) * x$numToAdd)
}))
我想将一列的值累加到组的末尾,尽管在另一列中出现特定值时开始添加。我只对组内特定值的第一个实例感兴趣。因此,如果该值在组内再次出现,则添加列应继续添加值。我知道这听起来像是一个相当奇怪的问题,所以希望示例 table 有意义。
下面的数据框是我现在的:
> df = data.frame(group = c(1,1,1,1,2,2,2,2,2,3,3,3,4,4,4),numToAdd = c(1,1,3,2,4,2,1,3,2,1,2,1,2,3,2),occurs = c(0,0,1,0,0,1,0,0,0,0,1,1,0,0,0))
> df
group numToAdd occurs
1 1 1 0
2 1 1 0
3 1 3 1
4 1 2 0
5 2 4 0
6 2 2 1
7 2 1 0
8 2 3 0
9 2 2 0
10 3 1 0
11 3 2 1
12 3 1 1
13 4 2 0
14 4 3 0
15 4 2 0
因此,每当组中出现 1 时,我想要 numToAdd 列中值的累加和,直到新组开始。这看起来像下面这样:
> finalDF = data.frame(group = c(1,1,1,1,2,2,2,2,2,3,3,3,4,4,4),numToAdd = c(1,1,3,2,4,2,1,3,2,1,2,1,2,3,2),occurs = c(0,0,1,0,0,1,0,0,0,0,1,1,0,0,0),added = c(0,0,3,5,0,2,3,6,8,0,2,3,0,0,0))
> finalDF
group numToAdd occurs added
1 1 1 0 0
2 1 1 0 0
3 1 3 1 3
4 1 2 0 5
5 2 4 0 0
6 2 2 1 2
7 2 1 0 3
8 2 3 0 6
9 2 2 0 8
10 3 1 0 0
11 3 2 1 2
12 3 1 1 3
13 4 2 0 0
14 4 3 0 0
15 4 2 0 0
因此,添加的列为 0,直到组内出现 1,然后累加 numToAdd 的值,直到移动到新组,将添加的列变回 0。在第三组中,值为 1第二次找到,但累计和仍在继续。此外,在第 4 组中,从未找到值 1,因此添加列中的值仍为 0。
我玩过 dplyr,但无法正常工作。下面的解法只输出总和,不输出每行递增的累计数
library(dplyr)
df =
df %>%
mutate(added=ifelse(occurs == 1,cumsum(numToAdd),0)) %>%
group_by(group)
尝试
df %>%
group_by(group) %>%
mutate(added= cumsum(numToAdd*cummax(occurs)))
# group numToAdd occurs added
# 1 1 1 0 0
# 2 1 1 0 0
# 3 1 3 1 3
# 4 1 2 0 5
# 5 2 4 0 0
# 6 2 2 1 2
# 7 2 1 0 3
# 8 2 3 0 6
# 9 2 2 0 8
# 10 3 1 0 0
# 11 3 2 1 2
# 12 3 1 1 3
# 13 4 2 0 0
# 14 4 3 0 0
# 15 4 2 0 0
或使用data.table
library(data.table)#v1.9.5+
i1 <-setDT(df)[, .I[(rleid(occurs) + (occurs>0))>1], group]$V1
df[, added:=0][i1, added:=cumsum(numToAdd), by = group]
或与 dplyr
setDT(df)[,added := cumsum(numToAdd * cummax(occurs)) , by = group]
您可以在 base R 中使用 split-apply-combine 类似的东西:
df$added <- unlist(lapply(split(df, df$group), function(x) {
y <- rep(0, nrow(x))
pos <- cumsum(x$occurs) > 0
y[pos] <- cumsum(x$numToAdd[pos])
y
}))
df
# group numToAdd occurs added
# 1 1 1 0 0
# 2 1 1 0 0
# 3 1 3 1 3
# 4 1 2 0 5
# 5 2 4 0 0
# 6 2 2 1 2
# 7 2 1 0 3
# 8 2 3 0 6
# 9 2 2 0 8
# 10 3 1 0 0
# 11 3 2 1 2
# 12 3 1 1 3
# 13 4 2 0 0
# 14 4 3 0 0
# 15 4 2 0 0
要添加另一个 base R
方法:
df$added <- unlist(lapply(split(df, df$group), function(x) {
c(x[,'occurs'][cumsum(x[,'occurs']) == 0L],
cumsum(x[,'numToAdd'][cumsum(x[,'occurs']) != 0L]))
}))
# group numToAdd occurs added
# 1 1 1 0 0
# 2 1 1 0 0
# 3 1 3 1 3
# 4 1 2 0 5
# 5 2 4 0 0
# 6 2 2 1 2
# 7 2 1 0 3
# 8 2 3 0 6
# 9 2 2 0 8
# 10 3 1 0 0
# 11 3 2 1 2
# 12 3 1 1 3
# 13 4 2 0 0
# 14 4 3 0 0
# 15 4 2 0 0
另一个基地R:
df$added <- unlist(lapply(split(df,df$group),function(x){
cumsum((cumsum(x$occurs) > 0) * x$numToAdd)
}))