为什么这个 JavaScript SkipList 实现有 "nodes" 和 "groups",它们的结构是这样的?
Why does this JavaScript SkipList implementation have "nodes" and "groups" which are structured the way they are?
A SkipList is a probabilistic data structure used, at least in part, for implementing an ordered key/value map. It is arranged in levels where higher levels skip nodes (the higher up, the more it skips), and the lowest level contains the nodes. As far as I have read, each level is implemented as a linked list, possibly a doubly linked list. And for some reason,跳过列表更适合并发,因为在多线程环境中,与 red/black 树或 B 相比,它们可以在没有锁的情况下实现 fast/optimal 性能+树木。
这里我们有一个在 JavaScript 中实现的“proper skip list”,复制到这里以供参考。 link 有一套很好的测试来展示它是如何工作的。
const DEFAULT_STACK_UP_PROBABILITY = 0.25;
class ProperSkipList {
constructor(options) {
options = options || {};
this.stackUpProbability = options.stackUpProbability || DEFAULT_STACK_UP_PROBABILITY;
this.updateLength = options.updateLength !== false;
this.typePriorityMap = {
'undefined': 0,
'object': 1,
'number': 2,
'bigint': 2,
'string': 3
};
this.clear();
}
clear() {
let headNode = {
prev: null
};
let tailNode = {
next: null
};
this.head = {
isHead: true,
key: undefined,
value: undefined,
nodes: [headNode]
};
this.tail = {
isTail: true,
key: undefined,
value: undefined,
nodes: [tailNode]
};
headNode.next = tailNode;
tailNode.prev = headNode;
headNode.group = this.head;
tailNode.group = this.tail;
this.length = this.updateLength ? 0 : undefined;
}
upsert(key, value) {
let {matchingNode, prevNode, searchPath} = this._searchAndTrack(key);
if (matchingNode) {
let previousValue = matchingNode.group.value;
matchingNode.group.value = value;
return previousValue;
}
// Insert the entry.
let newNode = {
prev: prevNode,
next: prevNode.next
};
let newGroup = {
key,
value,
nodes: [newNode]
};
newNode.group = newGroup;
prevNode.next = newNode;
newNode.next.prev = newNode;
// Stack up the entry for fast search.
let layerIndex = 1;
while (Math.random() < this.stackUpProbability) {
let prevLayerNode = searchPath[layerIndex];
if (!prevLayerNode) {
let newHeadNode = {
prev: null,
group: this.head
};
let newTailNode = {
next: null,
group: this.tail
};
newHeadNode.next = newTailNode;
this.head.nodes.push(newHeadNode);
newTailNode.prev = newHeadNode;
this.tail.nodes.push(newTailNode);
prevLayerNode = newHeadNode;
}
let newNode = {
prev: prevLayerNode,
next: prevLayerNode.next,
group: newGroup
};
prevLayerNode.next = newNode;
newNode.next.prev = newNode;
newGroup.nodes.push(newNode);
layerIndex++;
}
if (this.updateLength) this.length++;
return undefined;
}
find(key) {
let {matchingNode} = this._search(key);
return matchingNode ? matchingNode.group.value : undefined;
}
has(key) {
return !!this.find(key);
}
_isAGreaterThanB(a, b) {
let typeA = typeof a;
let typeB = typeof b;
if (typeA === typeB) {
return a > b;
}
let typeAPriority = this.typePriorityMap[typeA];
let typeBPriority = this.typePriorityMap[typeB];
if (typeAPriority === typeBPriority) {
return a > b;
}
return typeAPriority > typeBPriority;
}
// The two search methods are similar but were separated for performance reasons.
_searchAndTrack(key) {
let layerCount = this.head.nodes.length;
let searchPath = new Array(layerCount);
let layerIndex = layerCount - 1;
let currentNode = this.head.nodes[layerIndex];
let prevNode = currentNode;
while (true) {
let currentNodeGroup = currentNode.group;
let currentKey = currentNodeGroup.key;
if (!currentNodeGroup.isTail) {
if (this._isAGreaterThanB(key, currentKey) || currentNodeGroup.isHead) {
prevNode = currentNode;
currentNode = currentNode.next;
continue;
}
if (key === currentKey) {
let matchingNode = currentNodeGroup.nodes[0];
searchPath[layerIndex] = matchingNode;
return {matchingNode, prevNode: matchingNode.prev, searchPath};
}
}
searchPath[layerIndex] = prevNode;
if (--layerIndex < 0) {
return {matchingNode: undefined, prevNode, searchPath};
}
currentNode = prevNode.group.nodes[layerIndex];
}
}
_search(key) {
let layerIndex = this.head.nodes.length - 1;
let currentNode = this.head.nodes[layerIndex];
let prevNode = currentNode;
while (true) {
let currentNodeGroup = currentNode.group;
let currentKey = currentNodeGroup.key;
if (!currentNodeGroup.isTail) {
if (this._isAGreaterThanB(key, currentKey) || currentNodeGroup.isHead) {
prevNode = currentNode;
currentNode = currentNode.next;
continue;
}
if (key === currentKey) {
let matchingNode = currentNodeGroup.nodes[0];
return {matchingNode, prevNode: matchingNode.prev};
}
}
if (--layerIndex < 0) {
return {matchingNode: undefined, prevNode};
}
currentNode = prevNode.group.nodes[layerIndex];
}
}
findEntriesFromMin() {
return this._createEntriesIteratorAsc(this.head.nodes[0].next);
}
findEntriesFromMax() {
return this._createEntriesIteratorDesc(this.tail.nodes[0].prev);
}
minEntry() {
let [key, value] = this.findEntriesFromMin().next().value;
return [key, value];
}
maxEntry() {
let [key, value] = this.findEntriesFromMax().next().value;
return [key, value];
}
minKey() {
return this.minEntry()[0];
}
maxKey() {
return this.maxEntry()[0];
}
minValue() {
return this.minEntry()[1];
}
maxValue() {
return this.maxEntry()[1];
}
_extractNode(matchingNode) {
let nodes = matchingNode.group.nodes;
for (let layerNode of nodes) {
let prevNode = layerNode.prev;
prevNode.next = layerNode.next;
prevNode.next.prev = prevNode;
}
if (this.updateLength) this.length--;
return matchingNode.group.value;
}
extract(key) {
let {matchingNode} = this._search(key);
if (matchingNode) {
return this._extractNode(matchingNode);
}
return undefined;
}
delete(key) {
return this.extract(key) !== undefined;
}
findEntries(fromKey) {
let {matchingNode, prevNode} = this._search(fromKey);
if (matchingNode) {
return {
matchingValue: matchingNode.group.value,
asc: this._createEntriesIteratorAsc(matchingNode),
desc: this._createEntriesIteratorDesc(matchingNode)
};
}
return {
matchingValue: undefined,
asc: this._createEntriesIteratorAsc(prevNode.next),
desc: this._createEntriesIteratorDesc(prevNode)
};
}
deleteRange(fromKey, toKey, deleteLeft, deleteRight) {
if (fromKey == null) {
fromKey = this.minKey();
deleteLeft = true;
}
if (toKey == null) {
toKey = this.maxKey();
deleteRight = true;
}
if (this._isAGreaterThanB(fromKey, toKey)) {
return;
}
let {prevNode: fromNode, searchPath: leftSearchPath, matchingNode: matchingLeftNode} = this._searchAndTrack(fromKey);
let {prevNode: toNode, searchPath: rightSearchPath, matchingNode: matchingRightNode} = this._searchAndTrack(toKey);
let leftNode = matchingLeftNode ? matchingLeftNode : fromNode;
let rightNode = matchingRightNode ? matchingRightNode : toNode.next;
if (leftNode === rightNode) {
if (deleteLeft) {
this._extractNode(leftNode);
}
return;
}
if (this.updateLength) {
let currentNode = leftNode;
while (currentNode && currentNode.next !== rightNode) {
this.length--;
currentNode = currentNode.next;
}
}
let leftGroupNodes = leftNode.group.nodes;
let rightGroupNodes = rightNode.group.nodes;
let layerCount = this.head.nodes.length;
for (let layerIndex = 0; layerIndex < layerCount; layerIndex++) {
let layerLeftNode = leftGroupNodes[layerIndex];
let layerRightNode = rightGroupNodes[layerIndex];
if (layerLeftNode && layerRightNode) {
layerLeftNode.next = layerRightNode;
layerRightNode.prev = layerLeftNode;
continue;
}
if (layerLeftNode) {
let layerRightmostNode = rightSearchPath[layerIndex];
if (!layerRightmostNode.group.isTail) {
layerRightmostNode = layerRightmostNode.next;
}
layerLeftNode.next = layerRightmostNode;
layerRightmostNode.prev = layerLeftNode;
continue;
}
if (layerRightNode) {
let layerLeftmostNode = leftSearchPath[layerIndex];
layerLeftmostNode.next = layerRightNode;
layerRightNode.prev = layerLeftmostNode;
continue;
}
// If neither left nor right nodes are present on the layer, connect based
// on search path to remove in-between entries.
let layerRightmostNode = rightSearchPath[layerIndex];
if (!layerRightmostNode.group.isTail) {
layerRightmostNode = layerRightmostNode.next;
}
let layerLeftmostNode = leftSearchPath[layerIndex];
layerLeftmostNode.next = layerRightmostNode;
layerRightmostNode.prev = layerLeftmostNode;
}
if (deleteLeft && matchingLeftNode) {
this._extractNode(matchingLeftNode);
}
if (deleteRight && matchingRightNode) {
this._extractNode(matchingRightNode);
}
}
_createEntriesIteratorAsc(currentNode) {
let i = 0;
return {
next: function () {
let currentGroup = currentNode.group;
if (currentGroup.isTail) {
return {
value: [currentNode.key, currentNode.value, i],
done: true
}
}
currentNode = currentNode.next;
return {
value: [currentGroup.key, currentGroup.value, i++],
done: currentGroup.isTail
};
},
[Symbol.iterator]: function () { return this; }
};
}
_createEntriesIteratorDesc(currentNode) {
let i = 0;
return {
next: function () {
let currentGroup = currentNode.group;
if (currentGroup.isHead) {
return {
value: [currentNode.key, currentNode.value, i],
done: true
}
}
currentNode = currentNode.prev;
return {
value: [currentGroup.key, currentGroup.value, i++],
done: currentGroup.isHead
};
},
[Symbol.iterator]: function () { return this; }
};
}
}
我想知道 SkipList 的理论概念如何应用于此实现。但这不是我的问题,我的问题非常具体,如底部所述。但首先要看几件事。比如clear
函数就是这样实现的,创建一个全新的SkipList:
clear() {
let headNode = {
prev: null
};
let tailNode = {
next: null
};
this.head = {
isHead: true,
key: undefined,
value: undefined,
nodes: [headNode]
};
this.tail = {
isTail: true,
key: undefined,
value: undefined,
nodes: [tailNode]
};
headNode.next = tailNode;
tailNode.prev = headNode;
headNode.group = this.head;
tailNode.group = this.tail;
this.length = this.updateLength ? 0 : undefined;
}
请注意 headNode.group = this.head
中的“组”具有以下结构:
{
isTail: boolean,
isHead: boolean.
key: undefined,
value: undefined,
nodes: [node]
}
或插入新节点:
// Insert the entry.
let newNode = {
prev: prevNode,
next: prevNode.next
};
let newGroup = {
key,
value,
nodes: [newNode]
};
newNode.group = newGroup;
prevNode.next = newNode;
newNode.next.prev = newNode;
因此 node
具有 prev/next/group 组属性,而 group
具有 key/value/nodes 组。最后,请注意 this.head.nodes[layerIndex]
等在几个地方被调用,在我看来它只是绕过了 SkipList 的 linked-list 性质并且有一个内部数组来存储所有节点.基本上我很困惑,我已经看了一天这段代码,在我看来,每个级别节点都在存储该级别的所有子节点的数组,或类似的东西。我对这里发生的事情感到困惑。
可以解释一下这个 SkipList 实现的一般模型是什么吗?即:
group
和 node
对象的含义,以及为什么它们具有它们的结构。
nodes
数组在组中的作用。
对于上下文,在阅读了几篇关于它的论文并理解了总体思路之后,我正在尝试学习如何实现 SkipList。我想对其施加一些限制,所以不想使用任何现有的实现。我希望它在 JavaScript 和 C 中工作,所以它需要在一个上下文中是单线程的,而在另一个上下文中是多线程的,所以我有一点要学习。但是知道如何在 JavaScript 中实现它,就像上面的代码所做的那样,是很好的第一步。
你的问题总结如下:
- The meaning of group and node objects, and why they have their structure they do.
- What the nodes array is doing on a group.
我将使用来自 brilliant.org:
的图像
链表显示为水平带,而数组显示为垂直堆栈。
A group 对应于集合中的 one 不同的键——以黄色标记。相应的值未在图像中描述,而只是有效载荷,对于理解数据结构不是必需的。一个组有一个 nodes 数组——显示为键顶部的堆栈。这些节点中的每一个都属于不同的链表,其中它们代表相同的键。这些节点再次对该组进行反向引用,因此一个节点知道它代表哪个键,以及哪些其他链表具有该相同键的节点。
所以 nodes 数组实际上将一个键复制到不同的列表。一个节点数组不代表集合中的不同 个键——只有一个。它就像一部电梯,从一列火车(链表)跳到另一列,使用相同的钥匙。
这些数组的大小是随机确定的,但平均而言应该很小。这是由 stackUpProbability
驱动的。它表示一个数组扩展一个节点(在图像中向上)的概率。至少有 一个 节点(对于一个键)的概率显然是 1,但是数组中至少还有一个节点的概率(因此大小为 at至少 2),是 stackUpProbability
。它的尺寸为 3 的概率是 (stackUpProbability
)²... 等
这样,底部链表(在 layerIndex
1)将在集合中有 all 个键(每个键一个节点,按排序顺序),但是任何下一层的钥匙都将减少,而顶层可能只有一只手。节点较少的列表提供了一种在集合中快速移动以搜索值的方法。这提供了可以找到值的位置的接近度。通过“电梯”,搜索算法可以降级到较低(较慢)的链表并在那里继续搜索,直到它到达最低级别,在那里可以找到密钥(如果存在),或者它应该在哪里(如果不存在) ).
A SkipList is a probabilistic data structure used, at least in part, for implementing an ordered key/value map. It is arranged in levels where higher levels skip nodes (the higher up, the more it skips), and the lowest level contains the nodes. As far as I have read, each level is implemented as a linked list, possibly a doubly linked list. And for some reason,跳过列表更适合并发,因为在多线程环境中,与 red/black 树或 B 相比,它们可以在没有锁的情况下实现 fast/optimal 性能+树木。
这里我们有一个在 JavaScript 中实现的“proper skip list”,复制到这里以供参考。 link 有一套很好的测试来展示它是如何工作的。
const DEFAULT_STACK_UP_PROBABILITY = 0.25;
class ProperSkipList {
constructor(options) {
options = options || {};
this.stackUpProbability = options.stackUpProbability || DEFAULT_STACK_UP_PROBABILITY;
this.updateLength = options.updateLength !== false;
this.typePriorityMap = {
'undefined': 0,
'object': 1,
'number': 2,
'bigint': 2,
'string': 3
};
this.clear();
}
clear() {
let headNode = {
prev: null
};
let tailNode = {
next: null
};
this.head = {
isHead: true,
key: undefined,
value: undefined,
nodes: [headNode]
};
this.tail = {
isTail: true,
key: undefined,
value: undefined,
nodes: [tailNode]
};
headNode.next = tailNode;
tailNode.prev = headNode;
headNode.group = this.head;
tailNode.group = this.tail;
this.length = this.updateLength ? 0 : undefined;
}
upsert(key, value) {
let {matchingNode, prevNode, searchPath} = this._searchAndTrack(key);
if (matchingNode) {
let previousValue = matchingNode.group.value;
matchingNode.group.value = value;
return previousValue;
}
// Insert the entry.
let newNode = {
prev: prevNode,
next: prevNode.next
};
let newGroup = {
key,
value,
nodes: [newNode]
};
newNode.group = newGroup;
prevNode.next = newNode;
newNode.next.prev = newNode;
// Stack up the entry for fast search.
let layerIndex = 1;
while (Math.random() < this.stackUpProbability) {
let prevLayerNode = searchPath[layerIndex];
if (!prevLayerNode) {
let newHeadNode = {
prev: null,
group: this.head
};
let newTailNode = {
next: null,
group: this.tail
};
newHeadNode.next = newTailNode;
this.head.nodes.push(newHeadNode);
newTailNode.prev = newHeadNode;
this.tail.nodes.push(newTailNode);
prevLayerNode = newHeadNode;
}
let newNode = {
prev: prevLayerNode,
next: prevLayerNode.next,
group: newGroup
};
prevLayerNode.next = newNode;
newNode.next.prev = newNode;
newGroup.nodes.push(newNode);
layerIndex++;
}
if (this.updateLength) this.length++;
return undefined;
}
find(key) {
let {matchingNode} = this._search(key);
return matchingNode ? matchingNode.group.value : undefined;
}
has(key) {
return !!this.find(key);
}
_isAGreaterThanB(a, b) {
let typeA = typeof a;
let typeB = typeof b;
if (typeA === typeB) {
return a > b;
}
let typeAPriority = this.typePriorityMap[typeA];
let typeBPriority = this.typePriorityMap[typeB];
if (typeAPriority === typeBPriority) {
return a > b;
}
return typeAPriority > typeBPriority;
}
// The two search methods are similar but were separated for performance reasons.
_searchAndTrack(key) {
let layerCount = this.head.nodes.length;
let searchPath = new Array(layerCount);
let layerIndex = layerCount - 1;
let currentNode = this.head.nodes[layerIndex];
let prevNode = currentNode;
while (true) {
let currentNodeGroup = currentNode.group;
let currentKey = currentNodeGroup.key;
if (!currentNodeGroup.isTail) {
if (this._isAGreaterThanB(key, currentKey) || currentNodeGroup.isHead) {
prevNode = currentNode;
currentNode = currentNode.next;
continue;
}
if (key === currentKey) {
let matchingNode = currentNodeGroup.nodes[0];
searchPath[layerIndex] = matchingNode;
return {matchingNode, prevNode: matchingNode.prev, searchPath};
}
}
searchPath[layerIndex] = prevNode;
if (--layerIndex < 0) {
return {matchingNode: undefined, prevNode, searchPath};
}
currentNode = prevNode.group.nodes[layerIndex];
}
}
_search(key) {
let layerIndex = this.head.nodes.length - 1;
let currentNode = this.head.nodes[layerIndex];
let prevNode = currentNode;
while (true) {
let currentNodeGroup = currentNode.group;
let currentKey = currentNodeGroup.key;
if (!currentNodeGroup.isTail) {
if (this._isAGreaterThanB(key, currentKey) || currentNodeGroup.isHead) {
prevNode = currentNode;
currentNode = currentNode.next;
continue;
}
if (key === currentKey) {
let matchingNode = currentNodeGroup.nodes[0];
return {matchingNode, prevNode: matchingNode.prev};
}
}
if (--layerIndex < 0) {
return {matchingNode: undefined, prevNode};
}
currentNode = prevNode.group.nodes[layerIndex];
}
}
findEntriesFromMin() {
return this._createEntriesIteratorAsc(this.head.nodes[0].next);
}
findEntriesFromMax() {
return this._createEntriesIteratorDesc(this.tail.nodes[0].prev);
}
minEntry() {
let [key, value] = this.findEntriesFromMin().next().value;
return [key, value];
}
maxEntry() {
let [key, value] = this.findEntriesFromMax().next().value;
return [key, value];
}
minKey() {
return this.minEntry()[0];
}
maxKey() {
return this.maxEntry()[0];
}
minValue() {
return this.minEntry()[1];
}
maxValue() {
return this.maxEntry()[1];
}
_extractNode(matchingNode) {
let nodes = matchingNode.group.nodes;
for (let layerNode of nodes) {
let prevNode = layerNode.prev;
prevNode.next = layerNode.next;
prevNode.next.prev = prevNode;
}
if (this.updateLength) this.length--;
return matchingNode.group.value;
}
extract(key) {
let {matchingNode} = this._search(key);
if (matchingNode) {
return this._extractNode(matchingNode);
}
return undefined;
}
delete(key) {
return this.extract(key) !== undefined;
}
findEntries(fromKey) {
let {matchingNode, prevNode} = this._search(fromKey);
if (matchingNode) {
return {
matchingValue: matchingNode.group.value,
asc: this._createEntriesIteratorAsc(matchingNode),
desc: this._createEntriesIteratorDesc(matchingNode)
};
}
return {
matchingValue: undefined,
asc: this._createEntriesIteratorAsc(prevNode.next),
desc: this._createEntriesIteratorDesc(prevNode)
};
}
deleteRange(fromKey, toKey, deleteLeft, deleteRight) {
if (fromKey == null) {
fromKey = this.minKey();
deleteLeft = true;
}
if (toKey == null) {
toKey = this.maxKey();
deleteRight = true;
}
if (this._isAGreaterThanB(fromKey, toKey)) {
return;
}
let {prevNode: fromNode, searchPath: leftSearchPath, matchingNode: matchingLeftNode} = this._searchAndTrack(fromKey);
let {prevNode: toNode, searchPath: rightSearchPath, matchingNode: matchingRightNode} = this._searchAndTrack(toKey);
let leftNode = matchingLeftNode ? matchingLeftNode : fromNode;
let rightNode = matchingRightNode ? matchingRightNode : toNode.next;
if (leftNode === rightNode) {
if (deleteLeft) {
this._extractNode(leftNode);
}
return;
}
if (this.updateLength) {
let currentNode = leftNode;
while (currentNode && currentNode.next !== rightNode) {
this.length--;
currentNode = currentNode.next;
}
}
let leftGroupNodes = leftNode.group.nodes;
let rightGroupNodes = rightNode.group.nodes;
let layerCount = this.head.nodes.length;
for (let layerIndex = 0; layerIndex < layerCount; layerIndex++) {
let layerLeftNode = leftGroupNodes[layerIndex];
let layerRightNode = rightGroupNodes[layerIndex];
if (layerLeftNode && layerRightNode) {
layerLeftNode.next = layerRightNode;
layerRightNode.prev = layerLeftNode;
continue;
}
if (layerLeftNode) {
let layerRightmostNode = rightSearchPath[layerIndex];
if (!layerRightmostNode.group.isTail) {
layerRightmostNode = layerRightmostNode.next;
}
layerLeftNode.next = layerRightmostNode;
layerRightmostNode.prev = layerLeftNode;
continue;
}
if (layerRightNode) {
let layerLeftmostNode = leftSearchPath[layerIndex];
layerLeftmostNode.next = layerRightNode;
layerRightNode.prev = layerLeftmostNode;
continue;
}
// If neither left nor right nodes are present on the layer, connect based
// on search path to remove in-between entries.
let layerRightmostNode = rightSearchPath[layerIndex];
if (!layerRightmostNode.group.isTail) {
layerRightmostNode = layerRightmostNode.next;
}
let layerLeftmostNode = leftSearchPath[layerIndex];
layerLeftmostNode.next = layerRightmostNode;
layerRightmostNode.prev = layerLeftmostNode;
}
if (deleteLeft && matchingLeftNode) {
this._extractNode(matchingLeftNode);
}
if (deleteRight && matchingRightNode) {
this._extractNode(matchingRightNode);
}
}
_createEntriesIteratorAsc(currentNode) {
let i = 0;
return {
next: function () {
let currentGroup = currentNode.group;
if (currentGroup.isTail) {
return {
value: [currentNode.key, currentNode.value, i],
done: true
}
}
currentNode = currentNode.next;
return {
value: [currentGroup.key, currentGroup.value, i++],
done: currentGroup.isTail
};
},
[Symbol.iterator]: function () { return this; }
};
}
_createEntriesIteratorDesc(currentNode) {
let i = 0;
return {
next: function () {
let currentGroup = currentNode.group;
if (currentGroup.isHead) {
return {
value: [currentNode.key, currentNode.value, i],
done: true
}
}
currentNode = currentNode.prev;
return {
value: [currentGroup.key, currentGroup.value, i++],
done: currentGroup.isHead
};
},
[Symbol.iterator]: function () { return this; }
};
}
}
我想知道 SkipList 的理论概念如何应用于此实现。但这不是我的问题,我的问题非常具体,如底部所述。但首先要看几件事。比如clear
函数就是这样实现的,创建一个全新的SkipList:
clear() {
let headNode = {
prev: null
};
let tailNode = {
next: null
};
this.head = {
isHead: true,
key: undefined,
value: undefined,
nodes: [headNode]
};
this.tail = {
isTail: true,
key: undefined,
value: undefined,
nodes: [tailNode]
};
headNode.next = tailNode;
tailNode.prev = headNode;
headNode.group = this.head;
tailNode.group = this.tail;
this.length = this.updateLength ? 0 : undefined;
}
请注意 headNode.group = this.head
中的“组”具有以下结构:
{
isTail: boolean,
isHead: boolean.
key: undefined,
value: undefined,
nodes: [node]
}
或插入新节点:
// Insert the entry.
let newNode = {
prev: prevNode,
next: prevNode.next
};
let newGroup = {
key,
value,
nodes: [newNode]
};
newNode.group = newGroup;
prevNode.next = newNode;
newNode.next.prev = newNode;
因此 node
具有 prev/next/group 组属性,而 group
具有 key/value/nodes 组。最后,请注意 this.head.nodes[layerIndex]
等在几个地方被调用,在我看来它只是绕过了 SkipList 的 linked-list 性质并且有一个内部数组来存储所有节点.基本上我很困惑,我已经看了一天这段代码,在我看来,每个级别节点都在存储该级别的所有子节点的数组,或类似的东西。我对这里发生的事情感到困惑。
可以解释一下这个 SkipList 实现的一般模型是什么吗?即:
group
和node
对象的含义,以及为什么它们具有它们的结构。nodes
数组在组中的作用。
对于上下文,在阅读了几篇关于它的论文并理解了总体思路之后,我正在尝试学习如何实现 SkipList。我想对其施加一些限制,所以不想使用任何现有的实现。我希望它在 JavaScript 和 C 中工作,所以它需要在一个上下文中是单线程的,而在另一个上下文中是多线程的,所以我有一点要学习。但是知道如何在 JavaScript 中实现它,就像上面的代码所做的那样,是很好的第一步。
你的问题总结如下:
- The meaning of group and node objects, and why they have their structure they do.
- What the nodes array is doing on a group.
我将使用来自 brilliant.org:
的图像链表显示为水平带,而数组显示为垂直堆栈。
A group 对应于集合中的 one 不同的键——以黄色标记。相应的值未在图像中描述,而只是有效载荷,对于理解数据结构不是必需的。一个组有一个 nodes 数组——显示为键顶部的堆栈。这些节点中的每一个都属于不同的链表,其中它们代表相同的键。这些节点再次对该组进行反向引用,因此一个节点知道它代表哪个键,以及哪些其他链表具有该相同键的节点。
所以 nodes 数组实际上将一个键复制到不同的列表。一个节点数组不代表集合中的不同 个键——只有一个。它就像一部电梯,从一列火车(链表)跳到另一列,使用相同的钥匙。
这些数组的大小是随机确定的,但平均而言应该很小。这是由 stackUpProbability
驱动的。它表示一个数组扩展一个节点(在图像中向上)的概率。至少有 一个 节点(对于一个键)的概率显然是 1,但是数组中至少还有一个节点的概率(因此大小为 at至少 2),是 stackUpProbability
。它的尺寸为 3 的概率是 (stackUpProbability
)²... 等
这样,底部链表(在 layerIndex
1)将在集合中有 all 个键(每个键一个节点,按排序顺序),但是任何下一层的钥匙都将减少,而顶层可能只有一只手。节点较少的列表提供了一种在集合中快速移动以搜索值的方法。这提供了可以找到值的位置的接近度。通过“电梯”,搜索算法可以降级到较低(较慢)的链表并在那里继续搜索,直到它到达最低级别,在那里可以找到密钥(如果存在),或者它应该在哪里(如果不存在) ).