Haskell :: 如何创建任意长度的向量?
Haskell :: How do I create a Vector of arbitrary length?
想要在 Haskell 中实现类型安全的矩阵乘法。
定义如下:
{-# LANGUAGE TypeFamilies, DataKinds, GADTs #-}
module Vector where
data Nat = Succ Nat | Zero
data Vector (n :: Nat) a where
Nil :: Vector 'Zero a
(:::) :: a -> Vector n a -> Vector (Succ n) a
type Matrix n m a = Vector m (Vector n a)
instance Foldable (Vector n) where
foldr f b (a ::: as) = f a (foldr f b as)
foldr _ b Nil = b
instance Functor (Vector n) where
fmap f (x ::: xs) = f x ::: fmap f xs
fmap _ Nil = Nil
zipV :: (a -> b -> c) -> Vector n a -> Vector n b -> Vector n c
zipV f (a ::: as) (b ::: bs) = f a b ::: zipV f as bs
zipV f Nil Nil = Nil
最终有实施的需要
transpose :: Matrix n m a -> Matrix m n a
但我在 Haskell 能做的最好的事情是:
transpose :: Matrix n (Succ m) a -> Matrix (Succ m) n a
transpose (h ::: rest@(_ ::: _)) = zipV (:::) h (transpose rest)
transpose (h ::: Nil) = fmap (::: Nil) h
限制为 m > 0 因为我无法实现
nils :: {n :: Nat} -> Vector n (Vector Zero a)
切换到 Idris 只是为了练习并且做得更好:
matrix : Nat -> Nat -> Type -> Type
matrix n m a = Vector n (Vector m a)
nils : {n: Nat} -> Vector n (Vector Z a)
nils {n = Z} = Nil
nils {n = S k} = Nil ::: nils
transpose : matrix n m a -> matrix m n a
transpose (h ::: rest) = zipV (:::) h (transpose rest)
transpose Nil = nils
有想实现nils的冲动,但是Haskell类型级编程很别扭。我还必须在 Haskell 中对 rest@(_ ::: _) 进行模式匹配,但我没有在 Idris 中进行。我如何实施“nils”?
这基本上就是 singletons 的用途。这是类型类的 value-level 见证,使您可以访问此(概念上冗余的)信息,每个数字实际上都可以用标准形式描述。最小实现:
data NatSing n where
ZeroSing :: NatSing Zero
SuccSing :: KnownNat n => NatSing (Succ n)
class KnownNat n where
natSing :: NatSing n
instance KnownNat Zero where natSing = ZeroSing
instance KnownNat n => KnownNat (Succ n) where natSing = SuccSing
现在可以写
{-# LANGUAGE ScopedTypeVariables, UnicodeSyntax, TypeApplications #-}
nils :: ∀ n a . KnownNat n => Vector n (Vector Zero a)
nils = case natSing @n of
ZeroSing -> Nil
SuccSing -> Nil ::: nils
想要在 Haskell 中实现类型安全的矩阵乘法。 定义如下:
{-# LANGUAGE TypeFamilies, DataKinds, GADTs #-}
module Vector where
data Nat = Succ Nat | Zero
data Vector (n :: Nat) a where
Nil :: Vector 'Zero a
(:::) :: a -> Vector n a -> Vector (Succ n) a
type Matrix n m a = Vector m (Vector n a)
instance Foldable (Vector n) where
foldr f b (a ::: as) = f a (foldr f b as)
foldr _ b Nil = b
instance Functor (Vector n) where
fmap f (x ::: xs) = f x ::: fmap f xs
fmap _ Nil = Nil
zipV :: (a -> b -> c) -> Vector n a -> Vector n b -> Vector n c
zipV f (a ::: as) (b ::: bs) = f a b ::: zipV f as bs
zipV f Nil Nil = Nil
最终有实施的需要
transpose :: Matrix n m a -> Matrix m n a
但我在 Haskell 能做的最好的事情是:
transpose :: Matrix n (Succ m) a -> Matrix (Succ m) n a
transpose (h ::: rest@(_ ::: _)) = zipV (:::) h (transpose rest)
transpose (h ::: Nil) = fmap (::: Nil) h
限制为 m > 0 因为我无法实现
nils :: {n :: Nat} -> Vector n (Vector Zero a)
切换到 Idris 只是为了练习并且做得更好:
matrix : Nat -> Nat -> Type -> Type
matrix n m a = Vector n (Vector m a)
nils : {n: Nat} -> Vector n (Vector Z a)
nils {n = Z} = Nil
nils {n = S k} = Nil ::: nils
transpose : matrix n m a -> matrix m n a
transpose (h ::: rest) = zipV (:::) h (transpose rest)
transpose Nil = nils
有想实现nils的冲动,但是Haskell类型级编程很别扭。我还必须在 Haskell 中对 rest@(_ ::: _) 进行模式匹配,但我没有在 Idris 中进行。我如何实施“nils”?
这基本上就是 singletons 的用途。这是类型类的 value-level 见证,使您可以访问此(概念上冗余的)信息,每个数字实际上都可以用标准形式描述。最小实现:
data NatSing n where
ZeroSing :: NatSing Zero
SuccSing :: KnownNat n => NatSing (Succ n)
class KnownNat n where
natSing :: NatSing n
instance KnownNat Zero where natSing = ZeroSing
instance KnownNat n => KnownNat (Succ n) where natSing = SuccSing
现在可以写
{-# LANGUAGE ScopedTypeVariables, UnicodeSyntax, TypeApplications #-}
nils :: ∀ n a . KnownNat n => Vector n (Vector Zero a)
nils = case natSing @n of
ZeroSing -> Nil
SuccSing -> Nil ::: nils