将具有 Nan 值的行添加到 Pandas DataFrame

adding rows with Nan values to Pandas DataFrame

我想在每行之后插入具有 Nan 值的行

index values
0 44
1 50
2 51
3 66
4 23

DataFrame 应该是这样的

index values
0 44
1 Nan
2 50
3 Nan
4 51
5 Nan
6 66
7 Nan
8 23

使用concat with DataFrame filled by NaNs and same indices and then use DataFrame.sort_index:

df = (pd.concat([df, pd.DataFrame(index=df.index)])
        .sort_index(kind='stable', ignore_index=True))
print (df)
   values
0    44.0
1     NaN
2    50.0
3     NaN
4    51.0
5     NaN
6    66.0
7     NaN
8    23.0
9     NaN

如果需要删除最后一个缺失值:

df = (pd.concat([df, pd.DataFrame(index=df.index)])
        .sort_index(kind='stable', ignore_index=True)
        .iloc[:-1])
print (df)
   values
0    44.0
1     NaN
2    50.0
3     NaN
4    51.0
5     NaN
6    66.0
7     NaN
8    23.0

一个选项:

(df.assign(index=df['index']*2)
   .set_index('index')
   .reindex(range(len(df)*2))
   .reset_index()
)

输出:

   index  values
0      0    44.0
1      1     NaN
2      2    50.0
3      3     NaN
4      4    51.0
5      5     NaN
6      6    66.0
7      7     NaN
8      8    23.0
9      9     NaN