spark to_date 函数 - 如何将 31-DEC-98 转换为 1998-12-31 而不是 2098-12-31

spark to_date function - how to convert 31-DEC-98 to 1998-12-31 not 2098-12-31

(Py)Spark to_date 将 31-DEC-98 转换为 2098-12-31。有办法让它成为 1998-12-31 吗?

文档没有 select 1000 或 2000 的选项。

to_date(date_str[, fmt]) - Parses the date_str expression with the fmt expression to a date. Returns null with invalid input. By default, it follows casting rules to a date if the fmt is omitted.

grade_type = spark.read\
    .option("header", "true")\
    .option("nullValue", "")\
    .option("inferSchema", "true")\
    .csv("student/GRADE_TYPE_DATA_TABLE.csv")

grade_type.show(3)
-----
+---------------+-----------+----------+------------+-----------+-------------+
|GRADE_TYPE_CODE|DESCRIPTION|CREATED_BY|CREATED_DATE|MODIFIED_BY|MODIFIED_DATE|
+---------------+-----------+----------+------------+-----------+-------------+
|             FI|      Final|  MCAFFREY|   31-DEC-98|   MCAFFREY|    31-DEC-98|
|             HM|   Homework|  MCAFFREY|   31-DEC-98|   MCAFFREY|    31-DEC-98|
|             MT|    Midterm|  MCAFFREY|   31-DEC-98|   MCAFFREY|    31-DEC-98|
+---------------+-----------+----------+------------+-----------+-------------+
grade_type = spark.read\
    .option("header", "true")\
    .option("nullValue", "")\
    .option("inferSchema", "true")\
    .csv("student/GRADE_TYPE_DATA_TABLE.csv")\
    .withColumn("CREATED_DATE", to_date(col('CREATED_DATE'), "dd-MMM-yy"))\
    .withColumn("MODIFIED_DATE", to_date(col('MODIFIED_DATE'), "dd-MMM-yy"))

grade_type.show(3)
-----
+---------------+-----------+----------+------------+-----------+-------------+
|GRADE_TYPE_CODE|DESCRIPTION|CREATED_BY|CREATED_DATE|MODIFIED_BY|MODIFIED_DATE|
+---------------+-----------+----------+------------+-----------+-------------+
|             FI|      Final|  MCAFFREY|  2098-12-31|   MCAFFREY|   2098-12-31|
|             HM|   Homework|  MCAFFREY|  2098-12-31|   MCAFFREY|   2098-12-31|
|             MT|    Midterm|  MCAFFREY|  2098-12-31|   MCAFFREY|   2098-12-31|
+---------------+-----------+----------+------------+-----------+-------------+

是的,但我认为您必须进行一些丑陋的字符串操作:

 df.withColumn("MODIFIED_DATE", 
               to_date(concat(col("MODIFIED_DATE").substr(0, 7), 
                              lit("19"),
                              col("MODIFIED_DATE").substr(8, 2)
                             ), "dd-MMM-yyyy"))

我明白了(注意:使用 Scala,但 API 应该与 PySpark 相同):

scala> val df = Seq(("31-DEC-98")).toDF("MODIFIED_DATE")
scala> df.withColumn("new_date", to_date(concat(col("MODIFIED_DATE").substr(0, 7), lit("19"), col("MODIFIED_DATE").substr(8, 2)), "dd-MMM-yyyy")).show
+-------------+----------+
|MODIFIED_DATE|  new_date|
+-------------+----------+
|    31-DEC-98|1998-12-31|
+-------------+----------+

在 Spark 3.0 上,引入了一个新的日期解析器,处理 2 位数年份的行为发生了变化。
您可以在 Upgrading from Spark SQL 2.4 to 3.0

下找到更改参考

spark.conf.set('spark.sql.legacy.timeParserPolicy', 'LEGACY') 将为您提供具有所需结果的原始行为


from pyspark.sql import functions as F

spark.conf.set('spark.sql.legacy.timeParserPolicy', 'LEGACY')

(spark.createDataFrame([('31-DEC-98',)], 'my_date string')
 .select(F.to_date('my_date','dd-MMM-yy')
 .alias('my_new_date')).show()
)

+-----------+
|my_new_date|
+-----------+
| 1998-12-31|
+-----------+