球三角碰撞

Ball-Triangle Collision

目标: 我有一个三角球。球具有初始位置和速度。我想弄清楚球会击中三角形的哪一侧。

我试过的: I derived a formula that outputs which side the ball will hit, by parametrizing the ball's path and the triangle's sides, and finding the minimum time that satisfies the parametric equations. But when I implement this formula into my program, it produces the wrong results! I've tried many things, to no avail. Any help is greatly appreciated. The MWE is here: CodePen

let angle = 0;
let sides = [];
let vertices = [];

const len = 100;

function setup() {
  createCanvas(windowWidth, windowHeight);
  angleMode(DEGREES);

  angleOne = createSlider(0, 89, 60);
  angleOne.position(10, 10);
  angleOne.style("width", "80px");

  angleTwo = createSlider(0, 89, 60);
  angleTwo.position(10, 30);
  angleTwo.style("width", "80px");

  // Initial vertice & side setup (these don't change)
  let v1 = createVector(width / 2 - len / 2, height * 0.7);
  let v2 = createVector(width / 2 + len / 2, height * 0.7);

  sides[0] = new Side(v1.x, v1.y, v2.x, v2.y, "green");

  vertices[0] = new Vertex(v1.x, v1.y);
  vertices[1] = new Vertex(v2.x, v2.y);
}

function draw() {
  background(255);

  let angOne = angleOne.value();
  let angTwo = angleTwo.value();
  fill(0);
  strokeWeight(0);
  textSize(15);
  text(angOne, 100, 25);
  text(angTwo, 100, 45);

  let v2Offset = createVector(len * cos(-angOne), len * sin(-angOne));
  let v3Offset = createVector(-len * cos(angTwo), -len * sin(angTwo));

  vertices[2] = new Vertex(
    vertices[0].a.x + v2Offset.x,
    vertices[0].a.y + v2Offset.y
  );
  vertices[3] = new Vertex(
    vertices[1].a.x + v3Offset.x,
    vertices[1].a.y + v3Offset.y
  );

  // Update the sides
  sides[1] = new Side(
    vertices[0].a.x,
    vertices[0].a.y,
    vertices[2].a.x,
    vertices[2].a.y
  );

  sides[3] = new Side(
    vertices[1].a.x,
    vertices[1].a.y,
    vertices[3].a.x,
    vertices[3].a.y
  );

  const m1 =
    (vertices[2].a.y - vertices[0].a.y) / (vertices[2].a.x - vertices[0].a.x);

  const m2 =
    (vertices[3].a.y - vertices[1].a.y) / (vertices[3].a.x - vertices[1].a.x);

  // Calculate the y-offset relative to vertices[0]
  const b2 = (vertices[1].a.x - vertices[0].a.x) * -m2;

  const xInt = b2 / (m1 - m2);
  const yInt = xInt * m1;
  // Note xInt and yInt are relative to vertices[0]

  // draw all the things
  // sides.forEach((s) => s.show());

  // stroke(0, 255, 0);
  // strokeWeight(20);
  point(vertices[0].a.x + xInt, vertices[0].a.y + yInt);

  vertices[4] = new Vertex(vertices[0].a.x + xInt, vertices[0].a.y + yInt);

  sides[4] = new Side(
    vertices[1].a.x,
    vertices[1].a.y,
    vertices[0].a.x + xInt,
    vertices[0].a.y + yInt,
    "blue"
  );

  sides[5] = new Side(
    vertices[0].a.x,
    vertices[0].a.y,
    vertices[0].a.x + xInt,
    vertices[0].a.y + yInt,
    "purple"
  );

  scale(2); // so I can make the triangle actually *visible*
  translate(-width / 3, -height / 4);

  sides[0].show();
  sides[4].show();
  sides[5].show();

  vertices[0].show();
  vertices[1].show();
  vertices[4].show();

  strokeWeight(1);
  stroke(255, 0, 0);
  noFill();
  arc(vertices[0].a.x, vertices[0].a.y, 40, 40, -1 * angleOne.value(), 0, PIE);
  arc(
    vertices[1].a.x,
    vertices[1].a.y,
    40,
    40, -180, -(180 - angleTwo.value()),
    PIE
  );

  let P1x = vertices[0].a.x;
  let P1y = vertices[0].a.y;

  let P2x = vertices[1].a.x;
  let P2y = vertices[1].a.y;

  let P3x = vertices[4].a.x;
  let P3y = vertices[4].a.y;

  stroke(255, 255, 0);
  stroke("purple"); // Change the color
  strokeWeight(5); // Make the points 10 pixels in size

  let P0 = createVector(P1x + 60, P1y - 40);
  let V0 = createVector(0, -15);

  point(P0.x, P0.y);
  stroke(255, 0, 0);
  point(P0.x + V0.x, P0.y + V0.y);
  strokeWeight(2);
  stroke("purple");
  line(P0.x, P0.y, P0.x + V0.x, P0.y + V0.y);

  // console.log(P1x,P1y,P2x,P2y,P3x,P3y);

  let A1 = P3y - P1y;
  let B1 = -(P3x - P1x);
  let C1 = A1 * P1x + B1 * P1y;

  let A2 = -(P3y - P2y);
  let B2 = P3x - P2x;
  let C2 = A2 * P2x + B2 * P2y;

  let A3 = -(P2y - P1y);
  let B3 = P2x - P1x;
  let C3 = A3 * P2x + B3 * P2y;

  let t1 = (C1 - A1 * P0.x - B1 * P0.y) / (A1 * V0.x + B1 * P0.y);
  let t2 = (C2 - A2 * P0.x - B2 * P0.y) / (A2 * V0.x + B2 * P0.y);
  let t3 = (C3 - A3 * P0.x - B3 * P0.y) / (A3 * V0.x + B3 * P0.y);

  let times = [t1, t2, t3];
  let posTimes = [];

  for (let i = 0; i < times.length; i++) {
    times[i] = round(times[i], 2);
  }

  // console.log("After rounding:", times);

  for (let i = 0; i < times.length; i++) {
    if (times[i] > 0) {
      posTimes.push(times[i]);
    }
  }

  // console.log("posTimes:", posTimes);
  trueTime = min(posTimes);
  if (trueTime == round(t1, 2)) {
    fill("Blue");
    text("Hit Blue", vertices[1].a.x + 50, max(50, vertices[1].a.y - 50));
  } else if (trueTime == round(t2, 2)) {
    fill("Green");
    text("Hit Green", vertices[1].a.x + 50, max(50, vertices[1].a.y - 50));
  } else {
    fill("Purple");
    text("Hit Purple", vertices[1].a.x + 50, max(50, vertices[1].a.y - 50));
  }
}

class Side {
  constructor(x1, y1, x2, y2, col = "black") {
    this.a = createVector(x1, y1);
    this.b = createVector(x2, y2);
    this.color = col;
  }

  show() {
    stroke(this.color);
    strokeWeight(4);
    line(this.a.x, this.a.y, this.b.x, this.b.y);
  }
}

class Vertex {
  constructor(x1, y1) {
    this.a = createVector(x1, y1);
  }

  show() {
    stroke(255, 0, 0);
    strokeWeight(10);
    point(this.a.x, this.a.y);
  }
}
html, body { margin: 0; padding: 0; overflow: hidden }
<script src="https://cdn.jsdelivr.net/npm/p5@1.4.1/lib/p5.min.js"></script>

我无法理解你的数学。我认为您应该尝试使用解释性注释来注释此类代码。这通常会帮助您发现自己的错误:

  let A1 = P3y - P1y;
  let B1 = -(P3x - P1x);
  let C1 = A1 * P1x + B1 * P1y;

  let A2 = -(P3y - P2y);
  let B2 = P3x - P2x;
  let C2 = A2 * P2x + B2 * P2y;

  let A3 = -(P2y - P1y);
  let B3 = P2x - P1x;
  let C3 = A3 * P2x + B3 * P2y;

  let t1 = (C1 - A1 * P0.x - B1 * P0.y) / (A1 * V0.x + B1 * P0.y);
  let t2 = (C2 - A2 * P0.x - B2 * P0.y) / (A2 * V0.x + B2 * P0.y);
  let t3 = (C3 - A3 * P0.x - B3 * P0.y) / (A3 * V0.x + B3 * P0.y);

这是一些工作数学。可能不是最多的dense/elegant,但是我试着从基本的代数开始一步步讲解:

      // Find which of
      //
      // P1 to P2 = green
      // P1 to P3 = purple
      // P2 to P3 = blue
      //
      // PO to PO + V0 intersects with
      
      // Find the intersection point between lines A and B
      function intersection(Ax1, Ay1, Ax2, Ay2, Bx1, By1, Bx2, By2) {
        // Calculate the slope of line A
        let Am = (Ay2 - Ay1) / (Ax2 - Ax1);
        // Calculate the y-intercept of line A
        let Ab = Ay1 - Ax1 * Am;
        
        // slope of line B
        let Bm = (By2 - By1) / (Bx2 - Bx1);
        // y-intercept of line B
        let Bb = By1 - Bx1 * Bm;
        
        if (Am === Bm) {
          // Parallel lines
          return;
        }
        
        if (!Number.isFinite(Am)) {
          // Line A is vertical
          if (!Number.isFinite(Bm)) {
            // Line B is also vertical (Am may not equal Bm though because Infinity != NegativeInfinity)
            return;
          } else {
            // Since line A is vertical, intersection point will lie along the same x position as Ax1 and Ax2
            const xInt = Ax1;
            // Simply use the equation for line segment B to find the corresponding Y value
            const yInt = Bm * xInt + Bb;
            return createVector(xInt, yInt);
          }
        } else if (!Number.isFinite(Bm)) {
          // Line B is vertical
          const xInt = Bx1;
          const yInt = Am * xInt + Ab;
          return createVector(xInt, yInt);
        } else {
          // Derived from Am * x + Ab = Bm * x + Bb
          const xInt = (Bb - Ab) / (Am - Bm);
          const yInt = Am * xInt + Ab;
          return createVector(xInt, yInt);
        }
      }
      
      let P1toP2int =
        intersection(P1.x, P1.y, P2.x, P2.y, P0.x, P0.y, P0.x + V0.x, P0.y + V0.y);
        
      let P1toP3int =
        intersection(P1.x, P1.y, P3.x, P3.y, P0.x, P0.y, P0.x + V0.x, P0.y + V0.y);
        
      let P2toP3int =
        intersection(P2.x, P2.y, P3.x, P3.y, P0.x, P0.y, P0.x + V0.x, P0.y + V0.y);
        
      // These intersection points assume that all lines point infinitely in both
      // directions, so we still have some more work to do.
        
      // Check if each of these points is within the target segment
      function isWithin(lineX1, lineY1, lineX2, lineY2, xInt, yInt) {
        if (abs((lineY2 - lineY1) / (lineX2 - lineX1)) > 1) {
          // If the line segment is more vertical, check the Y position
          return yInt >= min(lineY1, lineY2) && yInt <= max(lineY1, lineY2);
        } else {
          return xInt >= min(lineX1, lineX2) && xInt <= max(lineX1, lineX2);
        }
      }
      
      if (P1toP2int && !isWithin(P1.x, P1.y, P2.x, P2.y, P1toP2int.x, P1toP2int.y)) {
        P1toP2int = undefined;
      }
      if (P1toP3int && !isWithin(P1.x, P1.y, P3.x, P3.y, P1toP3int.x, P1toP3int.y)) {
        P1toP3int = undefined;
      }
      if (P2toP3int && !isWithin(P2.x, P2.y, P3.x, P3.y, P2toP3int.x, P2toP3int.y)) {
        P2toP3int = undefined;
      }
      
      // Check if each intersection point is in the direction our ray is pointing
      function isOnRay(rayX0, rayY0, rayX1, rayY1, xInt, yInt) {
        // If the ray is more vertical, check the y coordinates
        if (abs((rayY1 - rayY0) / (rayX1 - rayX0)) > 1) {
          // If the ray is pointing in the positive Y direction
          // (rayY1 > rayY0) then the yInt must be on the positive
          // side of rayY0; and vice versa
          return (rayY1 > rayY0) === (yInt > rayY0);
        } else {
          return (rayX1 > rayX0) === (xInt > rayX0);
        }
      }
      
      if (P1toP2int && !isOnRay(P0.x, P0.y, P0.x + V0.x, P0.y + V0.y, P1toP2int.x, P1toP2int.y)) {
        P1toP2int = undefined;
      }
      if (P1toP3int && !isOnRay(P0.x, P0.y, P0.x + V0.x, P0.y + V0.y, P1toP3int.x, P1toP3int.y)) {
        P1toP3int = undefined;
      }
      if (P2toP3int && !isOnRay(P0.x, P0.y, P0.x + V0.x, P0.y + V0.y, P2toP3int.x, P2toP3int.y)) {
        P2toP3int = undefined;
      }

let angle = 0;
let sides = [];
let vertices = [];

const len = 100;

let angleOne;
let angleTwo;
let angleThree;

function setup() {
  createCanvas(windowWidth, windowHeight);
  angleMode(DEGREES);

  angleOne = createSlider(0, 89, 60);
  angleOne.position(10, 10);
  angleOne.style("width", "80px");

  angleTwo = createSlider(0, 89, 60);
  angleTwo.position(10, 30);
  angleTwo.style("width", "80px");

  angleThree = createSlider(0, 360, 0);
  angleThree.position(10, 50);
  angleThree.style("width", "80px");

  // Initial vertice & side setup (these don't change)
  let v1 = createVector(width / 2 - len / 2, height * 0.7);
  let v2 = createVector(width / 2 + len / 2, height * 0.7);

  sides[0] = new Side(v1.x, v1.y, v2.x, v2.y, "green");

  vertices[0] = new Vertex(v1.x, v1.y);
  vertices[1] = new Vertex(v2.x, v2.y);
}

function draw() {
  background(255);

  let angOne = angleOne.value();
  let angTwo = angleTwo.value();
  let rayAngle = angleThree.value();
  fill(0);
  strokeWeight(0);
  textSize(15);
  text(angOne, 100, 25);
  text(angTwo, 100, 45);
  text(rayAngle, 100, 65);

  let v2Offset = createVector(len * cos(-angOne), len * sin(-angOne));
  let v3Offset = createVector(-len * cos(angTwo), -len * sin(angTwo));

  vertices[2] = new Vertex(
    vertices[0].a.x + v2Offset.x,
    vertices[0].a.y + v2Offset.y
  );
  vertices[3] = new Vertex(
    vertices[1].a.x + v3Offset.x,
    vertices[1].a.y + v3Offset.y
  );

  // Update the sides
  sides[1] = new Side(
    vertices[0].a.x,
    vertices[0].a.y,
    vertices[2].a.x,
    vertices[2].a.y
  );

  sides[3] = new Side(
    vertices[1].a.x,
    vertices[1].a.y,
    vertices[3].a.x,
    vertices[3].a.y
  );

  const m1 =
    (vertices[2].a.y - vertices[0].a.y) / (vertices[2].a.x - vertices[0].a.x);

  const m2 =
    (vertices[3].a.y - vertices[1].a.y) / (vertices[3].a.x - vertices[1].a.x);

  // Calculate the y-offset relative to vertices[0]
  const b2 = (vertices[1].a.x - vertices[0].a.x) * -m2;

  const xInt = b2 / (m1 - m2);
  const yInt = xInt * m1;
  // Note xInt and yInt are relative to vertices[0]

  // draw all the things
  // sides.forEach((s) => s.show());

  // stroke(0, 255, 0);
  // strokeWeight(20);
  point(vertices[0].a.x + xInt, vertices[0].a.y + yInt);

  vertices[4] = new Vertex(vertices[0].a.x + xInt, vertices[0].a.y + yInt);

  sides[4] = new Side(
    vertices[1].a.x,
    vertices[1].a.y,
    vertices[4].a.x,
    vertices[4].a.y,
    "blue"
  );

  sides[5] = new Side(
    vertices[0].a.x,
    vertices[0].a.y,
    vertices[4].a.x,
    vertices[4].a.y,
    "purple"
  );

  scale(2); // so I can make the triangle actually *visible*
  translate(-width / 3, -height / 4);

  sides[0].show();
  sides[4].show();
  sides[5].show();

  vertices[0].show();
  vertices[1].show();
  vertices[4].show();

  strokeWeight(1);
  stroke(255, 0, 0);
  noFill();
  arc(vertices[0].a.x, vertices[0].a.y, 40, 40, -1 * angleOne.value(), 0, PIE);
  arc(
    vertices[1].a.x,
    vertices[1].a.y,
    40,
    40, -180, -(180 - angleTwo.value()),
    PIE
  );

  let P1 = vertices[0].a;
  let P2 = vertices[1].a;
  let P3 = vertices[4].a;

  stroke(255, 255, 0);
  stroke("purple"); // Change the color
  strokeWeight(5); // Make the points 10 pixels in size

  let P0 = createVector(P1.x + 60, P1.y - 40);
  
  
  let V0 = createVector(15 * cos(rayAngle), 15 * sin(rayAngle));

  point(P0.x, P0.y);
  stroke(255, 0, 0);
  point(P0.x + V0.x, P0.y + V0.y);
  strokeWeight(2);
  stroke("purple");
  line(P0.x, P0.y, P0.x + V0.x, P0.y + V0.y);

  // console.log(P1x,P1y,P2x,P2y,P3x,P3y);

  // Find which of
  //
  // P1 to P2 = green
  // P1 to P3 = purple
  // P2 to P3 = blue
  //
  // PO to PO + V0 intersects with
  
  // Find the intersection point between lines A and B
  function intersection(Ax1, Ay1, Ax2, Ay2, Bx1, By1, Bx2, By2) {
    // Calculate the slope of line A
    let Am = (Ay2 - Ay1) / (Ax2 - Ax1);
    // Calculate the y-intercept of line A
    let Ab = Ay1 - Ax1 * Am;
    
    // slope of line B
    let Bm = (By2 - By1) / (Bx2 - Bx1);
    // y-intercept of line B
    let Bb = By1 - Bx1 * Bm;
    
    if (Am === Bm) {
      // Parallel lines
      return;
    }
    
    if (!Number.isFinite(Am)) {
      // Line A is vertical
      if (!Number.isFinite(Bm)) {
        // Line B is also vertical (Am may not equal Bm though because Infinity != NegativeInfinity)
        return;
      } else {
        // Since line A is vertical, intersection point will lie along the same x position as Ax1 and Ax2
        const xInt = Ax1;
        // Simply use the equation for line segment B to find the corresponding Y value
        const yInt = Bm * xInt + Bb;
        return createVector(xInt, yInt);
      }
    } else if (!Number.isFinite(Bm)) {
      // Line B is vertical
      const xInt = Bx1;
      const yInt = Am * xInt + Ab;
      return createVector(xInt, yInt);
    } else {
      // Derived from Am * x + Ab = Bm * x + Bb
      const xInt = (Bb - Ab) / (Am - Bm);
      const yInt = Am * xInt + Ab;
      return createVector(xInt, yInt);
    }
  }
  
  let P1toP2int =
    intersection(P1.x, P1.y, P2.x, P2.y, P0.x, P0.y, P0.x + V0.x, P0.y + V0.y);
    
  let P1toP3int =
    intersection(P1.x, P1.y, P3.x, P3.y, P0.x, P0.y, P0.x + V0.x, P0.y + V0.y);
    
  let P2toP3int =
    intersection(P2.x, P2.y, P3.x, P3.y, P0.x, P0.y, P0.x + V0.x, P0.y + V0.y);
    
  // These intersection points assume that all lines point infinitely in both
  // directions, so we still have some more work to do.
    
  // Check if each of these points is within the target segment
  function isWithin(lineX1, lineY1, lineX2, lineY2, xInt, yInt) {
    if (abs((lineY2 - lineY1) / (lineX2 - lineX1)) > 1) {
      // If the line segment is more vertical, check the Y position
      return yInt >= min(lineY1, lineY2) && yInt <= max(lineY1, lineY2);
    } else {
      return xInt >= min(lineX1, lineX2) && xInt <= max(lineX1, lineX2);
    }
  }
  
  if (P1toP2int && !isWithin(P1.x, P1.y, P2.x, P2.y, P1toP2int.x, P1toP2int.y)) {
    P1toP2int = undefined;
  }
  if (P1toP3int && !isWithin(P1.x, P1.y, P3.x, P3.y, P1toP3int.x, P1toP3int.y)) {
    P1toP3int = undefined;
  }
  if (P2toP3int && !isWithin(P2.x, P2.y, P3.x, P3.y, P2toP3int.x, P2toP3int.y)) {
    P2toP3int = undefined;
  }
  
  // Check if each intersection point is in the direction our ray is pointing
  function isOnRay(rayX0, rayY0, rayX1, rayY1, xInt, yInt) {
    // If the ray is more vertical, check the y coordinates
    if (abs((rayY1 - rayY0) / (rayX1 - rayX0)) > 1) {
      // If the ray is pointing in the positive Y direction
      // (rayY1 > rayY0) then the yInt must be on the positive
      // side of rayY0; and vice versa
      return (rayY1 > rayY0) === (yInt > rayY0);
    } else {
      return (rayX1 > rayX0) === (xInt > rayX0);
    }
  }
  
  if (P1toP2int && !isOnRay(P0.x, P0.y, P0.x + V0.x, P0.y + V0.y, P1toP2int.x, P1toP2int.y)) {
    P1toP2int = undefined;
  }
  if (P1toP3int && !isOnRay(P0.x, P0.y, P0.x + V0.x, P0.y + V0.y, P1toP3int.x, P1toP3int.y)) {
    P1toP3int = undefined;
  }
  if (P2toP3int && !isOnRay(P0.x, P0.y, P0.x + V0.x, P0.y + V0.y, P2toP3int.x, P2toP3int.y)) {
    P2toP3int = undefined;
  }
  
  // Only one of these should be true, except perhaps if the ray passes precisely through a corner
  if (P1toP2int) {
    stroke("Red");
    strokeWeight(8);
    point(P1toP2int.x, P1toP2int.y);
    fill("Green");
    noStroke();
    text("Hit Green", vertices[1].a.x + 50, max(50, vertices[1].a.y - 50));
  }
  if (P1toP3int) {
    stroke("Red");
    strokeWeight(8);
    point(P1toP3int.x, P1toP3int.y);
    fill("Purple");
    noStroke();
    text("Hit Purple", vertices[1].a.x + 50, max(50, vertices[1].a.y - 50));
  }
  if (P2toP3int) {
    stroke("Red");
    strokeWeight(8);
    point(P2toP3int.x, P2toP3int.y);
    fill("Blue");
    noStroke();
    text("Hit Blue", vertices[1].a.x + 50, max(50, vertices[1].a.y - 50));
  }
  
  /* I don't understand this math at all
  let A1 = P3y - P1y;
  let B1 = -(P3x - P1x);
  let C1 = A1 * P1x + B1 * P1y;

  let A2 = -(P3y - P2y);
  let B2 = P3x - P2x;
  let C2 = A2 * P2x + B2 * P2y;

  let A3 = -(P2y - P1y);
  let B3 = P2x - P1x;
  let C3 = A3 * P2x + B3 * P2y;

  let t1 = (C1 - A1 * P0.x - B1 * P0.y) / (A1 * V0.x + B1 * P0.y);
  let t2 = (C2 - A2 * P0.x - B2 * P0.y) / (A2 * V0.x + B2 * P0.y);
  let t3 = (C3 - A3 * P0.x - B3 * P0.y) / (A3 * V0.x + B3 * P0.y);

  let times = [t1, t2, t3];
  let posTimes = [];

  for (let i = 0; i < times.length; i++) {
    times[i] = round(times[i], 2);
  }

  // console.log("After rounding:", times);

  for (let i = 0; i < times.length; i++) {
    if (times[i] > 0) {
      posTimes.push(times[i]);
    }
  }

  // console.log("posTimes:", posTimes);
  trueTime = min(posTimes);
  if (trueTime == round(t1, 2)) {
    fill("Blue");
    text("Hit Blue", vertices[1].a.x + 50, max(50, vertices[1].a.y - 50));
  } else if (trueTime == round(t2, 2)) {
    fill("Green");
    text("Hit Green", vertices[1].a.x + 50, max(50, vertices[1].a.y - 50));
  } else {
    fill("Purple");
    text("Hit Purple", vertices[1].a.x + 50, max(50, vertices[1].a.y - 50));
  }
  
  */
}

class Side {
  constructor(x1, y1, x2, y2, col = "black") {
    this.a = createVector(x1, y1);
    this.b = createVector(x2, y2);
    this.color = col;
  }

  show() {
    stroke(this.color);
    strokeWeight(4);
    line(this.a.x, this.a.y, this.b.x, this.b.y);
  }
}

class Vertex {
  constructor(x1, y1) {
    this.a = createVector(x1, y1);
  }

  show() {
    stroke(255, 0, 0);
    strokeWeight(10);
    point(this.a.x, this.a.y);
  }
}
html, body { margin: 0; padding: 0; overflow: hidden }
<script src="https://cdn.jsdelivr.net/npm/p5@1.4.1/lib/p5.min.js"></script>

一条射线(R1, R2)和一条线(L1, L2)的交点可以用Dot Product计算:

N = (L1.y - L2.y, L2.x - L1.x)
t = dot(R1-L1, N) / dot(L2-L1, N)
X = R1 + (R2-R1) * t    (if 0 <= t <= 1 and dot(R2-R1, X-R1) > 0)

p5.js中可以使用p5.Vector:

实现
function intersect_ray_line_segment(r1, r2, l1, l2) {
    let R = p5.Vector.sub(r2, r1);
    let L = p5.Vector.sub(l2, l1);
    let N = p.createVector(-R.y, R.x);
    if (L.dot(N) == 0) {
        return undefined; // parallel
    }
    let t = p5.Vector.sub(r1, l1).dot(N) / L.dot(N);
    if (t < 0 || t > 1) {
        return undefined; // intersection is not on line segment
    }
    let X = L.mult(t).add(l1);
    if (R.dot(p5.Vector.sub(X, r1)) < 0) {
        return undefined; // wrong direction
    }
    return X;
}

示例:

var sketch = function( p ) {

p.setup = function() {
    let sketchCanvas = p.createCanvas(p.windowWidth, p.windowHeight);
}

p.windowResized = function() {
    p.resizeCanvas(p.windowWidth, p.windowHeight);
}

function intersect_ray_line_segment(r1, r2, l1, l2) {
    let R = p5.Vector.sub(r2, r1);
    let L = p5.Vector.sub(l2, l1);
    let N = p.createVector(-R.y, R.x);
    if (L.dot(N) == 0) {
        return undefined; // parallel
    }
    let t = p5.Vector.sub(r1, l1).dot(N) / L.dot(N);
    if (t < 0 || t > 1) {
        return undefined; // intersection is not on line segment
    }
    let X = L.mult(t).add(l1);
    if (R.dot(p5.Vector.sub(X, r1)) < 0) {
        return undefined; // wrong direction
    }
    return X;
}

function closest_hit_point(r1, r2, points, lines) {
    let hit_p = undefined;
    let dist = undefined;
    let N = undefined;
    for (let i = 0; i < lines.length; ++i) {
        let l1 = points[lines[i][0]];
        let l2 = points[lines[i][1]];
        let new_hit_p = intersect_ray_line_segment(r1, r2, points[lines[i][0]], points[lines[i][1]]);
        if (new_hit_p) {
            let new_d = p5.Vector.dist(r1, new_hit_p);
            if (new_d > 0.1 && (!dist || new_d < dist)) {
                dist = new_d;
                hit_p = new_hit_p;
                N = p.createVector(l1.y - l2.y, l2.x - l1.x);
            }
        }
    }
    return hit_p ? [hit_p, N] : undefined;
}

p.draw = function() {
        
    let sx = p.width / 2;
    let sy = p.height / 2;
    let points = [
        p.createVector(-sx*0.7, -sy*0.2), p.createVector(-sx*0.7, +sy*0.2), 
        p.createVector(-sx*0.3, -sy*0.5), p.createVector(sx*0.4, -sy*0.5), 
        p.createVector(sx*0.6, -sy*0.3), p.createVector(sx*0.6, sy*0.5),  p.createVector(-sx*0.3, sy*0.5)];
    let lines = [[0, 1], [2, 3], [3, 4], [4, 5], [5, 6]]
    let center = new p5.Vector(0, 0);

    let mouse_p = p.createVector(p.mouseX - sx, p.mouseY - sy);
    let direction = p.createVector(mouse_p.x - center.x, mouse_p.y - center.y);
    let hit_points = [center]
    if (center.x != mouse_p.x || center.y != mouse_p.y) {
        let start = center;
        result = closest_hit_point(center, mouse_p, points, lines);
        let count = 0
        while (result && count < 100) {
            hit_points.push(result[0]);
            direction = direction.reflect(result[1]);
            result = closest_hit_point(result[0], p5.Vector.add(result[0], direction), points, lines);
            count ++;
        }
    }
    direction.normalize();
    hit_points.push(direction.mult( new p5.Vector(p.width, p.height).mag()).add(hit_points[hit_points.length-1]));

    p.translate(p.width/2, p.height/2);
    p.background(192);
    p.strokeWeight(3);
    p.stroke(64, 64, 255);
    p.fill(128, 128, 255);
    for (let i = 0; i < lines.length; ++i) {
        let p0 = points[lines[i][0]];
        let p1 = points[lines[i][1]];
        p.line(p0.x, p0.y, p1.x, p1.y);
    }
    for (let i = 0; i < points.length; ++i) {
        p.ellipse(points[i].x, points[i].y, 10, 10);
    }
    p.stroke(0, 0, 0);
    p.fill(128, 128, 128);
    p.ellipse(center.x, center.y, 10, 10);
    for (let i = 1; i < hit_points.length; ++i) {
        p.line(hit_points[i-1].x, hit_points[i-1].y, hit_points[i].x, hit_points[i].y);
    }
    for (let i = 0; i < hit_points.length; ++i) {
        p.ellipse(hit_points[i].x, hit_points[i].y, 10, 10);
    }
}

};

var circle_3_pts = new p5(sketch);
<script src="https://cdn.jsdelivr.net/npm/p5@1.4.1/lib/p5.min.js"></script>

Demo