如何显示浮点值而不是 0 整数

How to show float value instead of 0 integers

我试图在结果中允许十进制值,但它仍然显示 0,我在以下代码中缺少什么?

我已经将权重变量声明为浮点值,但是当我在 graph.AddEdge() 中输入小数时它不会转换。我的变量传递参数有没有错误?

#include <iostream>
#include <vector>
#include <list>
#include <utility>          // for pair<>
#include <iomanip>          // for setw()
#include <cmath>            // for floor
#include <chrono>
using namespace std;
using namespace std::chrono;
/////////////// MinHeap ////////////////

struct HeapNode{
    int key, element;
    HeapNode():key(0),element(0){};
    HeapNode(int key, int element):key(key),element(element){};
};
class BinaryHeap{
private:
    vector<HeapNode> heap;
    void swap(struct HeapNode &p1, struct HeapNode &p2);
    int FindPosition(int node);
    int GetParentNode(int node){return std::floor(node/2);};
public:
    BinaryHeap(){heap.resize(1);};
    BinaryHeap(int n){
        heap.resize(n + 1);          // to store vertex and its distance
    }
    // Min-Priority Queue
    void MinHeapify(int node, int length);
    void BuildMinHeap(vector<int> array);
    void DecreaseKey(int node, int newKey);
    void MinHeapInsert(int node, int key);
    int ExtractMin();
    int Minimum(){return heap[1].element;};

    bool IsHeapEmpty(){return (heap.size()<=1);};

};

int BinaryHeap::FindPosition(int node){

    int idx = 0;
    for (int i = 1; i < heap.size(); i++) {
        if (heap[i].element == node) {
            idx = i;
        }
    }
    return idx;
}
void BinaryHeap::MinHeapInsert(int node, int key){

    heap.push_back(HeapNode(node,key));
    DecreaseKey(node, key);
}
void BinaryHeap::DecreaseKey(int node, int newKey){

    int index_node = FindPosition(node);      // search the index of node

    if (newKey >= heap[index_node].key) {
        cout << "new key is not smaller than current key\n";
        return;
    }
    heap[index_node].key = newKey;            // update key
                                              // to check whether subtree fulfill minheap condition
    while (index_node > 1 && heap[GetParentNode(index_node)].key > heap[index_node].key) {
        swap(heap[index_node], heap[GetParentNode(index_node)]);
        index_node = GetParentNode(index_node);
    }
}
void BinaryHeap::swap(struct HeapNode &p1, struct HeapNode &p2){

    struct HeapNode temp = p1;
    p1 = p2;
    p2 = temp;
}
int BinaryHeap::ExtractMin(){

    if (IsHeapEmpty()) {
        std::cout << "error: heap is empty\n";
        exit(-1);
    }
    int min = heap[1].element;
    // let min store the element, and return min
    // delete the first element/vertex
    heap[1] = heap[heap.size()-1];            // put the last element in the first position of heap
    heap.erase(heap.begin()+heap.size()-1);   // delete the last element
    MinHeapify(1, (int)heap.size());          // rearrange heap since heap[1] has the biggest value

    return min;
}
void BinaryHeap::BuildMinHeap(std::vector<int> array){

    // store array in heap (do not use heap[0])
    for (int i = 0; i < array.size(); i++) {
        heap[i + 1].element = i;                 // let the idx in array as element
        heap[i + 1].key = array[i];              // let the value in array as key
    }
    for (int i = (int)heap.size()/2; i >= 1 ; i--) {
        MinHeapify(i, (int)heap.size()-1);     // length-1, since heap start from 1
    }
}
void BinaryHeap::MinHeapify(int node, int length){

    int left = 2*node,          // get the left child
        right = 2*node + 1,     // get the right child
        smallest;               // smallest will keep the smallest weight among vertices

    if (left <= length && heap[left].key < heap[node].key)
        smallest = left;
    else
        smallest = node;

    if (right <= length && heap[right].key < heap[smallest].key)
        smallest = right;

    if (smallest != node) {                 // if the node key is not the smallest
        swap(heap[smallest], heap[node]);   // swap to get the smallest
        MinHeapify(smallest, length);       // rearrange the heap tree
    }
}

/////////////// Prim's Algorithm /////////////////

static const int maxDistance = 100;

class Graph_MST{
private:
    int num_vertex;
    vector<list<pair<int,float> > > AdjList;
    vector<int> predecessor, distance;
    vector<bool> visited;
    void InitializeSingleSource(int Start);       // Let Start as the begin point
    void PrintDataArray(vector<int> array);
public:
    Graph_MST():num_vertex(0){};
    Graph_MST(int n):num_vertex(n){
        AdjList.resize(num_vertex);
    }
    void AddEdge(int from, int to, float weight);
    void Prim_MinQueue(int Start);

    friend class BinaryHeap;
};

void Graph_MST::InitializeSingleSource(int Start){

    distance.resize(num_vertex);
    predecessor.resize(num_vertex);

    for (int i = 0; i < num_vertex; i++) {
        distance[i] = maxDistance;
        predecessor[i] = -1;
    }
    distance[Start] = 0;      // set the starting vertex distance as 0, ExtractMin begins from starting vertex
}

void Graph_MST::Prim_MinQueue(int Start){

    InitializeSingleSource(Start);

    BinaryHeap minQueue(num_vertex);
    minQueue.BuildMinHeap(distance);      // use minQueue to handle distance[]

    visited.resize(num_vertex, false);    // initializa visited[] as {0,0,0,...,0}

    while (!minQueue.IsHeapEmpty()) {
        int u = minQueue.ExtractMin();
        visited[u] = true;
        for (list<pair<int, float> >::iterator itr = AdjList[u].begin();
             itr != AdjList[u].end(); itr++) {
            if (visited[(*itr).first] == false && (*itr).second < distance[(*itr).first]) {

                distance[(*itr).first] = (*itr).second;
                predecessor[(*itr).first] = u;
                minQueue.DecreaseKey((*itr).first, distance[(*itr).first]);
            }
        }
    }
    ///////   print result   /////////

    cout << setw(3) << "v1" << " - " << setw(3) << "v2"<< " : weight\n";
    int i = (Start+1)%num_vertex;
    while (i != Start) {
        cout << setw(3) << predecessor[i] << " - " << setw(3) << i
        << " : " << setw(3) << distance[i] <<"\n";
        i = (++i)%num_vertex;       // After 6, 6+1 = 7, error:bad_access
    }
}

void Graph_MST::AddEdge(int from, int to, float weight){

    AdjList[from].push_back(std::make_pair(to,weight));
    AdjList[to].push_back(std::make_pair(from,weight));
}

int main(){

    Graph_MST graph(12);

    graph.AddEdge(0, 1, 0.9); //ab
    graph.AddEdge(0, 2, 0.7); //ac
    graph.AddEdge(1, 3, 0.6); //bd
    graph.AddEdge(1, 6, 0.7); //bg
    graph.AddEdge(2, 3, 0.8); //cd
    graph.AddEdge(2, 4, 0.6); //ce
    graph.AddEdge(2, 5, 0.3); //cf
    graph.AddEdge(3, 7, 0.5); //dh
    graph.AddEdge(3, 5, 0.8); //df
    graph.AddEdge(3, 9, 0.1); //dj
    graph.AddEdge(4, 5, 0.5); //ef
    graph.AddEdge(5, 9, 0.2); //fj
    graph.AddEdge(5, 11, 0.3); //fh
    graph.AddEdge(6, 8, 0.7); //gi
    graph.AddEdge(7, 8, 0.4); //hi
    graph.AddEdge(7, 11, 0.5); //hl
    graph.AddEdge(7, 10, 0.3); //hk
    graph.AddEdge(8, 10, 0.7); //ik
    graph.AddEdge(8, 11, 0.8); //il
    graph.AddEdge(9, 11, 0.5); //jl
    graph.AddEdge(10, 11, 0.9); //kl


    cout << "MST found by Prim_MinQueue:\n";
    auto start = high_resolution_clock::now();
    graph.Prim_MinQueue(2);
    auto stop = high_resolution_clock::now();
    auto duration = duration_cast<microseconds>(stop - start);
    cout << "Time taken by function: "
         << duration.count() << " microseconds" << endl;
    return 0;
}
//ref source: http://alrightchiu.github.io/SecondRound/minimum-spanning-treeprims-algorithm-using-min-priority-queue.html

显示示例输出:

您使用的是 vector<int> 而不是 distancevector<float>。您需要使用 vector<float> 以便元素存储为 float 如下所示:

class Graph_MST{
private:
    //other members here as before
    
    vector<float> distance; //vector<int> changed to vector<float>
    
   //other members here as before
};
class BinaryHeap{
private:
    //other members here as before
public:
    
    void BuildMinHeap(vector<float> array);  //argument changed to vector<float>
};
void BinaryHeap::BuildMinHeap(std::vector<float> array){//argument changed to vector<float>

    //code here as before
}

修改后的程序输出可见here:

MST found by Prim_MinQueue:
new key is not smaller than current key
 v1 -  v2 : weight
  2 -   3 : 0.8
  2 -   4 : 0.6
  2 -   5 : 0.3
  1 -   6 : 0.7
  3 -   7 : 0.5
  7 -   8 : 0.4
  3 -   9 : 0.1
  7 -  10 : 0.3
  7 -  11 : 0.5
  2 -   0 : 0.7
  3 -   1 : 0.6
Time taken by function: 147 microseconds