CFD 模拟(具有多个 for 循环和矩阵运算)非常慢 运行。希望用更快的 numpy 函数(或替代函数)代替

CFD simulation (with multiple for loops and matrix operations) is very slow to run. Looking to replace with faster numpy functions (or alternative)

如上所述,下面的函数可以工作,但是速度很慢。我对使用 faster/optimised numpy(或其他)矢量化替代方案非常感兴趣。由于脚本太大,我没有在这里发布整个脚本。

我的具体问题是 - 是否有合适的 numpy(或其他)函数可用于 1) 减少 运行 时间和 2) 减少此函数的代码量,特别是 for 循环?

编辑:质量、温度、U 和 dpdh 是执行简单代数计算和 return 常数的函数

def my_system(t, y, n, hIn, min, mAlumina, cpAlumina, sa, V):
    dydt = np.zeros(3 * n) #setting up zeros array for solution (solving for [H0,Ts0,m0,H1,Ts1,m1,H2,Ts2,m2,..Hn,Tsn,mn])
# y = [h_0, Ts_0, m_0, ... h_n, Ts_n, m_n]
# y[0] = hin
# y[1] = Ts0
# y[2] = minL

i=0

## Using thermo
T = temp(y[i],P) #initial T
m = mass(y[i],P) #initial m

#initial values
dydt[i] = (min * (hIn - y[i]) + (U(hIn,P,min) * sa * (y[i + 1] - T))) / m # dH/dt (eq. 2)
dydt[i + 1] = -(U(hIn,P,min) * sa * (y[i + 1] - T)) / (mAlumina * cpAlumina) # dTs/dt from eq.3
dmdt = dydt[i] * dpdh(y[i], P) * V # dm/dt (holdup variation) eq. 4b
dydt[i + 2] = min - dmdt # mass flow out (eq.4a)

for i in range(3, 3 * n, 3): #starting at index 3, and incrementing by 3 because we are solving for 'triplets' [h,Ts,m] in each loop

    ## Using thermo
    T = temp(y[i],P)
    m = mass(y[i],P)

    # [h, TS, mdot]
    dydt[i] = (dydt[i-1] * (y[i - 3] - y[i]) + (U(y[i-3], P, dydt[i-1]) * sa * (y[i + 1] - T))) /  m # dH/dt (eq.2), dydt[i-1] is the mass of the previous tank
    dydt[i + 1] = -(U(y[i-3], P, dydt[i-1]) * sa * (y[i + 1] - T)) / (mAlumina * cpAlumina) # dTs/dt eq. (3)
    dmdt = dydt[i] * dpdh(y[i], P) * V # Equation 4b
    dydt[i + 2] = dydt[i-1] - dmdt # Equation 4a

return dydt

my_system函数内部使用的mass、temp、U、dpdh等函数都是以数字为输入,进行一些简单的代数运算,return一个数字(不需要优化这些我我只是提供它们以供进一步了解)

def temp(H,P):
    # returns temperature given enthalpy (after processing function)
    T = flasher.flash(H=H, P=P, zs=zs, retry=True).T
    return T

def mass(H, P):
    # returns mass holdup in mol
    m = flasher.flash(H=H, P=P, zs=zs, retry=True).rho()*V
    return m

def dpdh(H, P):
    res = flasher.flash(H=H, P=P, zs=zs, retry=True)
    if res.phase_count == 1:
        if res.phase == 'L':
            drho_dTf = res.liquid0.drho_dT()
        else:
            drho_dTf = res.gas.drho_dT()
    else:
        drho_dTf = res.bulk._equilibrium_derivative(of='rho', wrt='T', const='P')
    dpdh = drho_dTf/res.dH_dT_P()
    return dpdh

def U(H,P,m):
    # Given T, P, m
    air = Mixture(['nitrogen', 'oxygen'], Vfgs=[0.79, 0.21], H=H, P=P)
    mu = air.mu*1000/mWAir #mol/m.s
    cp = air.Cpm #J/mol.K
    kg = air.k #W/m.K
    g0 = m/areaBed #mol/m2.s
    a = sa*n/vTotal #m^2/m^3 #QUESTIONABLE
    psi = 1
    beta = 10
    pr = (mu*cp)/kg
    re = (6*g0)/(a*mu*psi)
 hfs = ((2.19*(re**1/3)) + (0.78*(re**0.619)))*(pr**1/3)*(kg)/diameterParticle

    h = 1/((1/hfs) + ((diameterParticle/beta)/kAlumina))

    return h

参考图片: enter image description here

为了提高速度,你可以看看Numba,如果你经常使用NumPy,它是有用的,但不是所有的代码都可以用Numba。除此之外,方程组的表述也很混乱。您正在求解 3 个方程并将结果添加到单个 dydt 列表中,每个列表包含 3 个元素。您可以简单地创建三个列表,求解每个方程并将它们添加到各自的列表中。为此,您需要 re-write my_system 为:

import numpy as np

def my_system(t, RHS, hIn, Ts0, minL, mAlumina, cpAlumina, sa, V):

    # get initial boundary condition values
    y1 = RHS[0]
    y2 = RHS[1]
    y3 = RHS[2]

    ## Using thermo
    T = # calculate T
    m = # calculate m

    # [h, TS, mdot] solve dy1dt for h, dy2dt for TS and dy3dt for mdot
    dy1dt = # dH/dt (eq.2), y1 corresponds to initial or previous value of dy1dt
    dy2dt = # dTs/dt eq. (3), y2 corresponds to initial or previous value of dy2dt
    dmdt =  # Equation 4b
    dy3dt = # Equation 4a, y3 corresponds to initial or previous value of dy3dt


    # Left-hand side of ODE
    LHS = np.zeros([3,])

    LHS[0] = dy1dt
    LHS[1] = dy2dt
    LHS[2] = dy3dt

    return LHS

在此函数中,您可以将 RHS 作为具有初始值 ([dy1dt, dy2dt, dy3dt]) 的列表传递,它将被解包为 y1y2y3 分别用于各自的微分方程。求解的方程(下一个值)将保存到 dy1dtdy2dtdy3dt,它们将作为列表 LHS.

返回

现在您可以使用 scipy.integrate.odeint 解决这个问题。因此,您可以离开for循环结构,使用如下方法求解方程:

hIn = #some val 
Ts0 = #some val 
minL = #some val
mAlumina = #some vaL
cpAlumina = #some val
sa = #some val
V = #some val
P = #some val

## Using thermo
T = temp(hIn,P) #initial T
m = mass(hIn,P) #initial m

#initial values
y01 = # calculate dH/dt (eq. 2)
y02 = # calculate dTs/dt from eq.3
dmdt = # calculate dm/dt (holdup variation) eq. 4b
y03 = # calculatemass flow out (eq.4a)

n = # time till where you want to solve the equation system
y0 = [y01, y02, y03]
step_size = 1
t = np.linspace(0, n, int(n/step_size)) # use that start time to which initial values corresponds
res = odeint(my_sytem, y0, t, args=(hIn, Ts0, minL, mAlumina, cpAlumina, sa, V,), tfirst=True)

print(res[:,0]) # print results for dH/dt
print(res[:,1]) # print results for dTs/dt
print(res[:,2]) # print results for Equation 4a

在这里,我将所有初始值都传递为 y0,并选择了 1 的步长,您可以根据需要进行更改。