comp() returns 排名而不是 p 值
comp() returns ranks instead of p-values
我得到了 comp() 应该返回 p-vals 的例子,但它最终返回了排名所以让我问一下:
为什么 survmisc 包中的 comp() 函数返回排名而不是 p 值?
有办法改变吗?
test_drug <- survfit(Surv(N_Days,Cens) ~ Drug, data = df)
comp(ten(test_drug), p=c(0,1,1,0.5,0.5),q=c(1,0,1,0.5,2))
输出:
Q Var Z pNorm
1 3.3457e+00 2.7643e+01 0.63634 4
n 3.2000e+02 1.0304e+06 0.31524 10
sqrtN 3.4634e+01 4.8218e+03 0.49877 9
S1 2.1524e+00 1.6867e+01 0.52410 7
S2 2.1294e+00 1.6650e+01 0.52185 8
FH_p=0_q=1 1.1647e+00 2.2356e+00 0.77898 3
FH_p=1_q=0 2.1809e+00 1.7056e+01 0.52809 6
FH_p=1_q=1 8.4412e-01 7.9005e-01 0.94968 1
FH_p=0.5_q=0.5 1.6895e+00 4.1759e+00 0.82678 2
FH_p=0.5_q=2 2.7491e-01 2.2027e-01 0.58575 5
maxAbsZ Var Q pSupBr
1 5.8550e+00 2.7643e+01 1.11361 5
n 9.7000e+02 1.0304e+06 0.95556 6
sqrtN 6.3636e+01 4.8218e+03 0.91643 7
S1 3.5891e+00 1.6867e+01 0.87391 9
S2 3.5737e+00 1.6650e+01 0.87581 8
FH_p=0_q=1 2.2539e+00 2.2356e+00 1.50743 2
FH_p=1_q=0 3.6025e+00 1.7056e+01 0.87230 10
FH_p=1_q=1 1.4726e+00 7.9005e-01 1.65678 1
FH_p=0.5_q=0.5 2.9457e+00 4.1759e+00 1.44148 3
FH_p=0.5_q=2 6.3430e-01 2.2027e-01 1.35150 4
所以根据这里的题目:
https://github.com/dardisco/survMisc/issues/21
以及我从早先解决问题的教授讲师那里得到的信息。
这是 R 版本的问题,作者或贡献者需要更新函数本身。
这可以通过使用 attr() 函数和 'tft' 代表趋势测试的参数来解决。此处的代码示例:
test_bilirubin <- survfit(Surv(N_Days,Cens) ~ Bilirubin_cat, data = df)
b=ten(test_bilirubin)
comp(b,p=c(0,1,1,0.5,0.5),q=c(1,0,1,0.5,2))
d=attr(b,"tft")
# "lrt" - the long-rank family of tests
#"sup" - Renyi test,
#"tft" - test for trend
cbind(d$tft$W,round(d$tft$pChisq,4))
我得到了 comp() 应该返回 p-vals 的例子,但它最终返回了排名所以让我问一下:
为什么 survmisc 包中的 comp() 函数返回排名而不是 p 值?
有办法改变吗?
test_drug <- survfit(Surv(N_Days,Cens) ~ Drug, data = df)
comp(ten(test_drug), p=c(0,1,1,0.5,0.5),q=c(1,0,1,0.5,2))
输出:
Q Var Z pNorm
1 3.3457e+00 2.7643e+01 0.63634 4
n 3.2000e+02 1.0304e+06 0.31524 10
sqrtN 3.4634e+01 4.8218e+03 0.49877 9
S1 2.1524e+00 1.6867e+01 0.52410 7
S2 2.1294e+00 1.6650e+01 0.52185 8
FH_p=0_q=1 1.1647e+00 2.2356e+00 0.77898 3
FH_p=1_q=0 2.1809e+00 1.7056e+01 0.52809 6
FH_p=1_q=1 8.4412e-01 7.9005e-01 0.94968 1
FH_p=0.5_q=0.5 1.6895e+00 4.1759e+00 0.82678 2
FH_p=0.5_q=2 2.7491e-01 2.2027e-01 0.58575 5
maxAbsZ Var Q pSupBr
1 5.8550e+00 2.7643e+01 1.11361 5
n 9.7000e+02 1.0304e+06 0.95556 6
sqrtN 6.3636e+01 4.8218e+03 0.91643 7
S1 3.5891e+00 1.6867e+01 0.87391 9
S2 3.5737e+00 1.6650e+01 0.87581 8
FH_p=0_q=1 2.2539e+00 2.2356e+00 1.50743 2
FH_p=1_q=0 3.6025e+00 1.7056e+01 0.87230 10
FH_p=1_q=1 1.4726e+00 7.9005e-01 1.65678 1
FH_p=0.5_q=0.5 2.9457e+00 4.1759e+00 1.44148 3
FH_p=0.5_q=2 6.3430e-01 2.2027e-01 1.35150 4
所以根据这里的题目:
https://github.com/dardisco/survMisc/issues/21
以及我从早先解决问题的教授讲师那里得到的信息。 这是 R 版本的问题,作者或贡献者需要更新函数本身。
这可以通过使用 attr() 函数和 'tft' 代表趋势测试的参数来解决。此处的代码示例:
test_bilirubin <- survfit(Surv(N_Days,Cens) ~ Bilirubin_cat, data = df)
b=ten(test_bilirubin)
comp(b,p=c(0,1,1,0.5,0.5),q=c(1,0,1,0.5,2))
d=attr(b,"tft")
# "lrt" - the long-rank family of tests
#"sup" - Renyi test,
#"tft" - test for trend
cbind(d$tft$W,round(d$tft$pChisq,4))