pandas 根据一个 header 值删除一列

pandas drop a column according to one header value

我有这个数据框

name,01100MS,02200MS,02500MS,03100MS,06400MS
lat,626323,616720,616288,611860,622375
long,5188431,5181393,5173583,5165895,5152605
alt,915,1499,1310,1235,190
1920-01-01,1,4.1,4.41,4.441,4.4441
1920-01-02,2,4.2,4.42,4.442,4.4442
1920-01-03,3,4.3,4.43,4.443,4.4443
1920-01-04,4,4.4,4.44,4.444,4.4444
1920-01-05,5,4.5,4.45,4.445,4.4445
1920-01-06,6,4.6,4.46,4.446,4.4446
1920-01-07,7,4.7,4.47,4.447,4.4447
1920-01-08,8,4.8,4.48,4.448,4.4448
1920-01-09,9,4.9,4.49,4.449,4.4449
1920-01-10,10,5,4.5,4.45,4.445
1920-01-11,11,5.1,4.51,4.451,4.4451

我读作:

 dfr     =  pd.read_csv(f_name,
                        parse_dates           = True,
                        index_col             = 0,
                        header                = [0,1,2,3],
                        infer_datetime_format = True,
                        cache_dates=True)

我想根据第 4 行的阈值删除一些列,因为我使用了多个索引,所以它是其中的一个。

我想做这样的事情:

for column in dfr:
    if dfr[column][2] <= 1300.:
        dfr = dfr.drop(column,axis=1) 

问题是我无法 select 多头中的正确“头”。我也想以一种聪明的方式来做,换句话说,避免循环。

你可以select第四级 Index.get_level_values and select columns with invert mask - greater like 1300 in DataFrame.loc:

df = df.loc[:,df.columns.get_level_values(3).astype(int) > 1300]

或者,如果不需要总是转换为整数,则可以在求解前设置值:

df = df.rename(columns=int, level=3)
print (df.columns)
MultiIndex([('01100MS', '626323', '5188431',  915),
            ('02200MS', '616720', '5181393', 1499),
            ('02500MS', '616288', '5173583', 1310),
            ('03100MS', '611860', '5165895', 1235),
            ('06400MS', '622375', '5152605',  190)],
           names=['name', 'lat', 'long', 'alt'])

df = df.loc[:,df.columns.get_level_values(3) > 1300]
print (df)
name       02200MS 02500MS
lat         616720  616288
long       5181393 5173583
alt           1499    1310
1920-01-01     4.1    4.41
1920-01-02     4.2    4.42
1920-01-03     4.3    4.43
1920-01-04     4.4    4.44
1920-01-05     4.5    4.45
1920-01-06     4.6    4.46
1920-01-07     4.7    4.47
1920-01-08     4.8    4.48
1920-01-09     4.9    4.49
1920-01-10     5.0    4.50
1920-01-11     5.1    4.51