将张量保存到 .pt 文件以创建数据集

Saving tensors to a .pt file in order to create a dataset

我的任务是创建一个数据集来测试我们正在处理的代码的功能。

数据集必须有一组张量,稍后将在生成模型中使用。

我正在尝试将张量保存到 .pt 文件,但我正在覆盖张量,因此创建了一个只有一个的文件。我读过 torch.utils.data.dataset,但我无法自己弄清楚如何使用它。

这是我的代码:

import torch
import numpy as np

from torch.utils.data import Dataset

#variables that will be used to create the size of the tensors:
num_jets, num_particles, num_features = 1, 30, 3


for i in range(100):
    #tensor from a gaussian dist with mean=5,std=1 and shape=size:
    tensor = torch.normal(5,1,size=(num_jets, num_particles, num_features)) 

    #We will need the tensors to be of the cpu type
    tensor = tensor.cpu()

    #save the tensor to 'tensor_dataset.pt'
    torch.save(tensor,'tensor_dataset.pt')


#open the recently created .pt file inside a list
tensor_list = torch.load('tensor_dataset.pt')

#prints the list. Just one tensor inside .pt file
print(tensor_list)

原因:你在循环中每次都覆盖了张量x,所以你没有得到你的列表,最后只有x。

解法:你有张量的大小,可以先初始化一个张量,然后遍历lst_tensors:

import torch
import numpy as np
from torch.utils.data import Dataset

num_jets, num_particles, num_features = 1, 30, 3

lst_tensors = torch.empty(size=(100,num_jets, num_particles, num_features))

for i in range(100):

    lst_tensors[i] = torch.normal(5,1,size=(num_jets, num_particles, num_features)) 

    lst_tensors[i] = lst_tensors[i].cpu()


torch.save(lst_tensors,'tensor_dataset.pt')

tensor_list = torch.load('tensor_dataset.pt')

print(tensor_list.shape)   # [100,1,30,3]