根据每组过去的记录找到cumcount和agg func
Find cumcount and agg func based on past records of each group
我有一个如下所示的数据框
df = pd.DataFrame(
{'stud_name' : ['ABC', 'ABC','ABC','DEF',
'DEF','DEF'],
'qty' : [123,31,490,518,70,900],
'trans_date' : ['13/11/2020','10/1/2018','11/11/2017','27/03/2016','13/05/2010','14/07/2008']})
我想执行以下操作
a) 对于每个 stud_name
,查看他们过去的数据(完整的过去数据)并计算 qty
的 min
、max
和 mean
] 列
请注意,每个唯一 stud_name
的第一个 record/row 将是 NA
,因为没有过去的数据(历史)可以查看和计算汇总统计数据
我尝试了类似下面的操作,但输出不正确
df['trans_date'] = pd.to_datetime(df['trans_date'])
df.sort_values(by=['stud_name','trans_date'],inplace=True)
df['past_transactions'] = df.groupby('stud_name').cumcount()
df['past_max_qty'] = df.groupby('stud_name')['qty'].expanding().max().values
df['past_min_qty'] = df.groupby('stud_name')['qty'].expanding().min().values
df['past_avg_qty'] = df.groupby('stud_name')['qty'].expanding().mean().values
我希望我的输出如下所示
我们可以使用自定义函数来计算每个学生的过去统计数据
def past_stats(q):
return (
q.expanding()
.agg(['max', 'min', 'mean'])
.shift().add_prefix('past_')
)
df.join(df.groupby('stud_name')['qty'].apply(past_stats))
stud_name qty trans_date past_max past_min past_mean
2 ABC 490 2017-11-11 NaN NaN NaN
1 ABC 31 2018-10-01 490.0 490.0 490.0
0 ABC 123 2020-11-13 490.0 31.0 260.5
5 DEF 900 2008-07-14 NaN NaN NaN
4 DEF 70 2010-05-13 900.0 900.0 900.0
3 DEF 518 2016-03-27 900.0 70.0 485.0
我有一个如下所示的数据框
df = pd.DataFrame(
{'stud_name' : ['ABC', 'ABC','ABC','DEF',
'DEF','DEF'],
'qty' : [123,31,490,518,70,900],
'trans_date' : ['13/11/2020','10/1/2018','11/11/2017','27/03/2016','13/05/2010','14/07/2008']})
我想执行以下操作
a) 对于每个 stud_name
,查看他们过去的数据(完整的过去数据)并计算 qty
的 min
、max
和 mean
] 列
请注意,每个唯一 stud_name
的第一个 record/row 将是 NA
,因为没有过去的数据(历史)可以查看和计算汇总统计数据
我尝试了类似下面的操作,但输出不正确
df['trans_date'] = pd.to_datetime(df['trans_date'])
df.sort_values(by=['stud_name','trans_date'],inplace=True)
df['past_transactions'] = df.groupby('stud_name').cumcount()
df['past_max_qty'] = df.groupby('stud_name')['qty'].expanding().max().values
df['past_min_qty'] = df.groupby('stud_name')['qty'].expanding().min().values
df['past_avg_qty'] = df.groupby('stud_name')['qty'].expanding().mean().values
我希望我的输出如下所示
我们可以使用自定义函数来计算每个学生的过去统计数据
def past_stats(q):
return (
q.expanding()
.agg(['max', 'min', 'mean'])
.shift().add_prefix('past_')
)
df.join(df.groupby('stud_name')['qty'].apply(past_stats))
stud_name qty trans_date past_max past_min past_mean
2 ABC 490 2017-11-11 NaN NaN NaN
1 ABC 31 2018-10-01 490.0 490.0 490.0
0 ABC 123 2020-11-13 490.0 31.0 260.5
5 DEF 900 2008-07-14 NaN NaN NaN
4 DEF 70 2010-05-13 900.0 900.0 900.0
3 DEF 518 2016-03-27 900.0 70.0 485.0