根据 pandas DataFrame 中的最后 N 行比较两列

Compare two columns based on last N rows in a pandas DataFrame

我想 groupby "ts_code" 并根据每组的最后 N 行计算最大值和最大值之后另一列的最小值之间的百分比。具体来说,

df

ts_code high low
0   A   20  10
1   A   30  5
2   A   40  20
3   A   50  10
4   A   20  30
5   B   20  10
6   B   30  5
7   B   40  20
8   B   50  10
9   B   20  30

目标

以下是我的预期结果

   ts_code  high low l3_high_low_pct_chg    l4_high_low_pct_chg
    0   A   20  10  NA  NA
    1   A   30  5   NA  NA
    2   A   40  20  0.5 NA
    3   A   50  10  0.8 0.8
    4   A   20  30  0.8 0.8
    5   B   50  10  NA  NA
    6   B   30  5   NA  NA
    7   B   40  20  0.9 NA
    8   B   10  10  0.75    0.9
    9   B   20  30  0.75    0.75

ln_high_low_pct_chg(如l3_high_low_pct_chg)=1-(峰后low列的最小值)/(high列的最大值), 每组和每一行的最后 N 行。

尝试并解决问题

df['l3_highest']=df.groupby('ts_code')['high'].transform(lambda x: x.rolling(3).max())
df['l3_lowest']=df.groupby('ts_code')['low'].transform(lambda x: x.rolling(3).min())
df['l3_high_low_pct_chg']=1-df['l3_lowest']/df['l3_highest']

但它失败了,因此对于第二行,l3_lowest 将是 5 而不是 20。我不知道如何计算峰值后的百分比。

对于最后 4 行,索引=8,低=10,高=50,低=5,l4_high_low_pct_chg=0.9 , at index=9, high=40, low=10, l4_high_low_pct_chg=0.75

Another test data

按 'ts_code' 分组只是一个简单的 groupby() 函数。 DataFrame.rolling() 函数适用于单列,因此如果您需要来自多列的数据,则很难应用它。您可以使用“from numpy_ext import rolling_apply as rolling_apply_ext”,如本例所示:。但是,我刚刚创建了一个函数,该函数手动将数据帧分组为 n 个长度 sub-dataframes,然后应用该函数来计算值。 idxmax() 找到低列峰值的索引值,然后我们找到后面的值的 min()。剩下的就很简单了。

import numpy as np
import pandas as pd

df = pd.DataFrame([['A', 20, 10],
    ['A', 30, 5],
    ['A', 40, 20],
    ['A', 50, 10],
    ['A', 20, 30],
    ['B', 50, 10],
    ['B', 30, 5],
    ['B', 40, 20],
    ['B', 10, 10],
    ['B', 20, 30]],
    columns=['ts_code', 'high', 'low']
)
    
 
def custom_f(df, n):
    s = pd.Series(np.nan, index=df.index)

    def sub_f(df_):
        high_peak_idx = df_['high'].idxmax()
        min_low_after_peak = df_.loc[high_peak_idx:]['low'].min()
        max_high = df_['high'].max()
        return 1 - min_low_after_peak / max_high

    for i in range(df.shape[0] - n + 1):
        df_ = df.iloc[i:i + n]
        s.iloc[i + n - 1] = sub_f(df_)

    return s


df['l3_high_low_pct_chg'] = df.groupby("ts_code").apply(custom_f, 3).values
df['l4_high_low_pct_chg'] = df.groupby("ts_code").apply(custom_f, 4).values


print(df)

如果您更喜欢使用滚动功能,此方法给出相同的输出:

def rolling_f(rolling_df):
    df_ = df.loc[rolling_df.index]
    high_peak_idx = df_['high'].idxmax()
    min_low_after_peak = df_.loc[high_peak_idx:]["low"].min()
    max_high = df_['high'].max()
    return 1 - min_low_after_peak / max_high

df['l3_high_low_pct_chg'] = df.groupby("ts_code").rolling(3).apply(rolling_f).values[:, 0]
df['l4_high_low_pct_chg'] = df.groupby("ts_code").rolling(4).apply(rolling_f).values[:, 0]

print(df)

最后,如果您想进行真正的滚动 window 计算,避免任何索引查找,您可以使用 numpy_ext (https://pypi.org/project/numpy-ext/)

from numpy_ext import rolling_apply

def np_ext_f(rolling_df, n):
    def rolling_apply_f(high, low):
        return 1 - low[np.argmax(high):].min() / high.max()
    try:
        return pd.Series(rolling_apply(rolling_apply_f, n, rolling_df['high'].values, rolling_df['low'].values), index=rolling_df.index)
    except ValueError:
        return pd.Series(np.nan, index=rolling_df.index)


df['l3_high_low_pct_chg'] = df.groupby('ts_code').apply(np_ext_f, n=3).sort_index(level=1).values
df['l4_high_low_pct_chg'] = df.groupby('ts_code').apply(np_ext_f, n=4).sort_index(level=1).values

print(df)

输出:

  ts_code  high  low  l3_high_low_pct_chg  l4_high_low_pct_chg
0       A    20   10                  NaN                  NaN
1       A    30    5                  NaN                  NaN
2       A    40   20                 0.50                  NaN
3       A    50   10                 0.80                 0.80
4       A    20   30                 0.80                 0.80
5       B    50   10                  NaN                  NaN
6       B    30    5                  NaN                  NaN
7       B    40   20                 0.90                  NaN
8       B    10   10                 0.75                 0.90
9       B    20   30                 0.75                 0.75

对于大型数据集,这些操作的速度成为一个问题。所以,为了比较这些不同方法的速度,我创建了一个计时函数:

import time

def timeit(f):

    def timed(*args, **kw):
        ts = time.time()
        result = f(*args, **kw)
        te = time.time()
        print ('func:%r took: %2.4f sec' % \
          (f.__name__, te-ts))
        return result

    return timed

接下来,让我们制作一个大型 DataFrame,只需将现有 DataFrame 复制 500 次即可:

df = pd.concat([df for x in range(500)], axis=0)
df = df.reset_index()

最后我们运行测试一个计时函数下的三个:

@timeit
def method_1():
    df['l52_high_low_pct_chg'] = df.groupby("ts_code").apply(custom_f, 52).values
method_1()

@timeit
def method_2():
    df['l52_high_low_pct_chg'] = df.groupby("ts_code").rolling(52).apply(rolling_f).values[:, 0]
method_2()

@timeit
def method_3():
    df['l52_high_low_pct_chg'] = df.groupby('ts_code').apply(np_ext_f, n=52).sort_index(level=1).values
method_3()

这给了我们这个输出:

func:'method_1' took: 2.5650 sec
func:'method_2' took: 15.1233 sec
func:'method_3' took: 0.1084 sec

因此,最快的方法是使用 numpy_ext,这是有道理的,因为它针对矢量化计算进行了优化。第二快的方法是我编写的自定义函数,它比较高效,因为它在进行一些矢量化计算的同时还进行了一些 Pandas 查找。迄今为止最慢的方法是使用 Pandas 滚动函数。

对于我的解决方案,我们将使用 .groupby("ts_code") 然后 .rolling 来处理特定大小的组和 custom_function。这个自定义函数将获取每个组,而不是直接对接收到的值应用函数,我们将使用这些值来查询原始数据帧。然后,我们可以通过找到“高”峰值所在的行来计算您期望的值,然后查看以下行以找到最小“低”值,最后使用您的公式计算结果:

def custom_function(group, df):
    # Query the original dataframe using the group values
    group = df.loc[group.values]
    # Calculate your formula
    high_peak_row = group["high"].idxmax()
    min_low_after_peak = group.loc[high_peak_row:, "low"].min()
    return 1 - min_low_after_peak / group.loc[high_peak_row, "high"]


# Reset the index to roll over that column and be able query the original dataframe
df["l3_high_low_pct_chg"] = df.reset_index().groupby("ts_code")["index"].rolling(3).apply(custom_function, args=(df,)).values
df["l4_high_low_pct_chg"] = df.reset_index().groupby("ts_code")["index"].rolling(4).apply(custom_function, args=(df,)).values

输出:

  ts_code  high  low  l3_high_low_pct_chg  l4_high_low_pct_chg
0       A    20   10                  NaN                  NaN
1       A    30    5                  NaN                  NaN
2       A    40   20                 0.50                  NaN
3       A    50   10                 0.80                 0.80
4       A    20   30                 0.80                 0.80
5       B    50   10                  NaN                  NaN
6       B    30    5                  NaN                  NaN
7       B    40   20                 0.90                  NaN
8       B    10   10                 0.75                 0.90
9       B    20   30                 0.75                 0.75

我们可以将这个想法进一步扩展到一个唯一的组:

groups = df.reset_index().groupby("ts_code")["index"]
for n in [3, 4]:
    df[f"l{n}_high_low_pct_chg"] = groups.rolling(n).apply(custom_function, args=(df,)).values