如何在 R 中的循环中更改线性回归中的预测变量?
How do I change predictors in linear regression in loop in R?
如何在 R 中的循环中更改线性回归中的预测变量?
下面是一个示例以及错误。有人可以修复它吗?
# sample data
mpg <- mpg
str(mpg)
# array of predictors
predictors <- c("hwy", "cty")
# loop over predictors
for (predictor in predictors)
{
# fit linear regression
model <- lm(formula = predictor ~ displ + cyl,
data = mpg)
# summary of model
summary(model)
}
错误
Error in model.frame.default(formula = predictor ~ displ + cyl, data = mpg, :
variable lengths differ (found for 'displ')
我们可以使用paste
或reformulate
。此外,由于它是一个 for
循环,因此创建一个对象来存储 summary
的输出
sumry_model <- vector('list', length(predictors))
names(sumry_model) <- predictors
for (predictor in predictors) {
# fit linear regression
model <- lm(reformulate(c("displ", "cyl"), response = predictor),
data = mpg)
# with paste
# model <- lm(formula = paste0(predictor, "~ displ + cyl"), data = mpg)
# summary of model
sumry_model[[predictor]] <- summary(model)
}
-输出
> sumry_model
$hwy
Call:
lm(formula = reformulate(c("displ", "cyl"), response = predictor),
data = mpg)
Residuals:
Min 1Q Median 3Q Max
-7.5098 -2.1953 -0.2049 1.9023 14.9223
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 38.2162 1.0481 36.461 < 2e-16 ***
displ -1.9599 0.5194 -3.773 0.000205 ***
cyl -1.3537 0.4164 -3.251 0.001323 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 3.759 on 231 degrees of freedom
Multiple R-squared: 0.6049, Adjusted R-squared: 0.6014
F-statistic: 176.8 on 2 and 231 DF, p-value: < 2.2e-16
$cty
Call:
lm(formula = reformulate(c("displ", "cyl"), response = predictor),
data = mpg)
Residuals:
Min 1Q Median 3Q Max
-5.9276 -1.4750 -0.0891 1.0686 13.9261
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 28.2885 0.6876 41.139 < 2e-16 ***
displ -1.1979 0.3408 -3.515 0.000529 ***
cyl -1.2347 0.2732 -4.519 9.91e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.466 on 231 degrees of freedom
Multiple R-squared: 0.6671, Adjusted R-squared: 0.6642
F-statistic: 231.4 on 2 and 231 DF, p-value: < 2.2e-16
这也可以作为多元响应来完成
summary(lm(cbind(hwy, cty) ~ displ + cyl, data = mpg))
或者如果我们想使用 predictors
summary(lm(as.matrix(mpg[predictors]) ~ displ + cyl, data = mpg))
如何在 R 中的循环中更改线性回归中的预测变量?
下面是一个示例以及错误。有人可以修复它吗?
# sample data
mpg <- mpg
str(mpg)
# array of predictors
predictors <- c("hwy", "cty")
# loop over predictors
for (predictor in predictors)
{
# fit linear regression
model <- lm(formula = predictor ~ displ + cyl,
data = mpg)
# summary of model
summary(model)
}
错误
Error in model.frame.default(formula = predictor ~ displ + cyl, data = mpg, :
variable lengths differ (found for 'displ')
我们可以使用paste
或reformulate
。此外,由于它是一个 for
循环,因此创建一个对象来存储 summary
sumry_model <- vector('list', length(predictors))
names(sumry_model) <- predictors
for (predictor in predictors) {
# fit linear regression
model <- lm(reformulate(c("displ", "cyl"), response = predictor),
data = mpg)
# with paste
# model <- lm(formula = paste0(predictor, "~ displ + cyl"), data = mpg)
# summary of model
sumry_model[[predictor]] <- summary(model)
}
-输出
> sumry_model
$hwy
Call:
lm(formula = reformulate(c("displ", "cyl"), response = predictor),
data = mpg)
Residuals:
Min 1Q Median 3Q Max
-7.5098 -2.1953 -0.2049 1.9023 14.9223
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 38.2162 1.0481 36.461 < 2e-16 ***
displ -1.9599 0.5194 -3.773 0.000205 ***
cyl -1.3537 0.4164 -3.251 0.001323 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 3.759 on 231 degrees of freedom
Multiple R-squared: 0.6049, Adjusted R-squared: 0.6014
F-statistic: 176.8 on 2 and 231 DF, p-value: < 2.2e-16
$cty
Call:
lm(formula = reformulate(c("displ", "cyl"), response = predictor),
data = mpg)
Residuals:
Min 1Q Median 3Q Max
-5.9276 -1.4750 -0.0891 1.0686 13.9261
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 28.2885 0.6876 41.139 < 2e-16 ***
displ -1.1979 0.3408 -3.515 0.000529 ***
cyl -1.2347 0.2732 -4.519 9.91e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.466 on 231 degrees of freedom
Multiple R-squared: 0.6671, Adjusted R-squared: 0.6642
F-statistic: 231.4 on 2 and 231 DF, p-value: < 2.2e-16
这也可以作为多元响应来完成
summary(lm(cbind(hwy, cty) ~ displ + cyl, data = mpg))
或者如果我们想使用 predictors
summary(lm(as.matrix(mpg[predictors]) ~ displ + cyl, data = mpg))