pyspark 数据框中的列重命名
Column Renaming in pyspark dataframe
我有带有特殊字符的列名。我重命名了该列并尝试保存,但它给出了保存失败的信息,说这些列具有特殊字符。我 运行 数据框上的打印模式,我看到没有任何特殊字符的列名。这是我试过的代码。
for c in df_source.columns:
df_source = df_source.withColumnRenamed(c, c.replace( "(" , ""))
df_source = df_source.withColumnRenamed(c, c.replace( ")" , ""))
df_source = df_source.withColumnRenamed(c, c.replace( "." , ""))
df_source.coalesce(1).write.format("parquet").mode("overwrite").option("header","true").save(stg_location)
我收到以下错误
Caused by: org.apache.spark.sql.AnalysisException: Attribute name "Number_of_data_samples_(input)" contains invalid character(s) among " ,;{}()\n\t=". Please use alias to rename it.
我还注意到的另一件事是当我执行 df_source.show() 或显示 (df_source) 时,两者都显示相同的错误并且 printschema 显示没有特殊字符。
谁能帮我找到解决方案。
尝试如下使用它 -
Input_df
from pyspark.sql.types import *
from pyspark.sql.functions import *
data = [("xyz", 1)]
schema = StructType([StructField("Number_of_data_samples_(input)", StringType(), True), StructField("id", IntegerType())])
df = spark.createDataFrame(data=data, schema=schema)
df.show()
+------------------------------+---+
|Number_of_data_samples_(input)| id|
+------------------------------+---+
| xyz| 1|
+------------------------------+---+
方法一
Using regular expressions
替换特殊字符,然后使用 toDF()
import re
cols=[re.sub("\.|\)|\(","",i) for i in df.columns]
df.toDF(*cols).show()
+----------------------------+---+
|Number_of_data_samples_input| id|
+----------------------------+---+
| xyz| 1|
+----------------------------+---+
方法二
Using .withColumnRenamed()
for i,j in zip(df.columns,cols):
df=df.withColumnRenamed(i,j)
df.show()
+----------------------------+---+
|Number_of_data_samples_input| id|
+----------------------------+---+
| xyz| 1|
+----------------------------+---+
方法三
Using .withColumn
创建新列并删除现有列
df = df.withColumn("Number_of_data_samples_input", lit(col("Number_of_data_samples_(input)"))).drop(col("Number_of_data_samples_(input)"))
df.show()
+---+----------------------------+
| id|Number_of_data_samples_input|
+---+----------------------------+
| 1| xyz|
+---+----------------------------+
我有带有特殊字符的列名。我重命名了该列并尝试保存,但它给出了保存失败的信息,说这些列具有特殊字符。我 运行 数据框上的打印模式,我看到没有任何特殊字符的列名。这是我试过的代码。
for c in df_source.columns:
df_source = df_source.withColumnRenamed(c, c.replace( "(" , ""))
df_source = df_source.withColumnRenamed(c, c.replace( ")" , ""))
df_source = df_source.withColumnRenamed(c, c.replace( "." , ""))
df_source.coalesce(1).write.format("parquet").mode("overwrite").option("header","true").save(stg_location)
我收到以下错误
Caused by: org.apache.spark.sql.AnalysisException: Attribute name "Number_of_data_samples_(input)" contains invalid character(s) among " ,;{}()\n\t=". Please use alias to rename it.
我还注意到的另一件事是当我执行 df_source.show() 或显示 (df_source) 时,两者都显示相同的错误并且 printschema 显示没有特殊字符。
谁能帮我找到解决方案。
尝试如下使用它 -
Input_df
from pyspark.sql.types import *
from pyspark.sql.functions import *
data = [("xyz", 1)]
schema = StructType([StructField("Number_of_data_samples_(input)", StringType(), True), StructField("id", IntegerType())])
df = spark.createDataFrame(data=data, schema=schema)
df.show()
+------------------------------+---+
|Number_of_data_samples_(input)| id|
+------------------------------+---+
| xyz| 1|
+------------------------------+---+
方法一
Using regular expressions
替换特殊字符,然后使用 toDF()
import re
cols=[re.sub("\.|\)|\(","",i) for i in df.columns]
df.toDF(*cols).show()
+----------------------------+---+
|Number_of_data_samples_input| id|
+----------------------------+---+
| xyz| 1|
+----------------------------+---+
方法二
Using .withColumnRenamed()
for i,j in zip(df.columns,cols):
df=df.withColumnRenamed(i,j)
df.show()
+----------------------------+---+
|Number_of_data_samples_input| id|
+----------------------------+---+
| xyz| 1|
+----------------------------+---+
方法三
Using .withColumn
创建新列并删除现有列
df = df.withColumn("Number_of_data_samples_input", lit(col("Number_of_data_samples_(input)"))).drop(col("Number_of_data_samples_(input)"))
df.show()
+---+----------------------------+
| id|Number_of_data_samples_input|
+---+----------------------------+
| 1| xyz|
+---+----------------------------+