在 canvas 上围绕形状绘制方框

Draw boxes around shapes on canvas

我有这样一张图片:

小圆圈不规则,但都是黑色的。

我正在寻找一种算法来获取由每个形状的所有矩形边界组成的数组,如下所示:

我正在尝试使用 HTML5 canvas 执行此操作,但我没有找到获得边界并继续下一个形状的方法。我所做的是获得带有黑色像素 x 和 y 位置的二维数组:

   var x = 0,
       y = 0,
       cells = [];  
   for (var i = 0; i < imgdata.data.length; i += 4) {
      if (imgdata.data[i] != 255) {
        var p = [x,y];
        cells.push(p);
      }
      if (x > image.width) {
        x = 0;
        y = y+1;
      }
      x = x+1;
   }
   console.log(cells);

您可以使用简单的 flood fill 风格的算法天真地做到这一点,该算法跟踪所有 4 个方向上每个黑色区域的 max/min 点。

该算法可能会访问每个像素两次并使用线性space。它还使用递归,所以如果你的黑色斑点太大,它会破坏堆栈。重构为使用显式堆栈可以避免这种情况。换句话说,它根本没有优化,只是概念验证。

这是没有 canvas 的基本算法。请注意,它仅给出网格边界内的点,从技术上讲,这会将框放在形状的边缘,但您可以 add/subtract 1(或其他填充量)到每个角以将边界框移到形状的外部随心所欲的形状。

const findBoundingBoxes = grid => {
  const flood = (i, j, best) => {
    if (i < 0 || j < 0 ||
        i >= grid.length || j >= grid[i].length ||
        !grid[i][j] || visited[i][j]) {
      return;
    }

    visited[i][j] = true;
    best.top = Math.min(best.top, i);
    best.bottom = Math.max(best.bottom, i);
    best.left = Math.min(best.left, j);
    best.right = Math.max(best.right, j);

    for (let di = -1; di < 2; di++) {
      for (let dj = -1; dj < 2; dj++) {
        if (di !== 0 || dj !== 0) {
          flood(i + di, j + dj, best);
        }
      }
    }
  };

  const boxes = [];
  const visited = [...Array(grid.length)]
    .map((_, i) => [...Array(grid[i].length)].fill(false));

  for (let i = 0; i < grid.length; i++) {
    for (let j = 0; j < grid[i].length; j++) {
      if (!grid[i][j] || visited[i][j]) {
        continue;
      }

      const best = {top: i, bottom: i, left: j, right: j};
      flood(i, j, best);
      boxes.push({
        topLeft: {x: best.left, y: best.top},
        topRight: {x: best.right, y: best.top},
        bottomLeft: {x: best.left, y: best.bottom},
        bottomRight: {x: best.right, y: best.bottom},
      });
    }
  }

  return boxes;
};

const grid = [
  "0000000000000",
  "0001100001000",
  "0011110111110",
  "0001100111100",
  "0000000000000",
].map(e => e.split("").map(Number));
console.log(findBoundingBoxes(grid));

现在,canvas。我正在将图像数据转换为二维网格以便于编码,这不是 performance-conscious。

const findBoundingBoxes = grid => {
  const flood = (i, j, best) => {
    if (i < 0 || j < 0 ||
        i >= grid.length || j >= grid[i].length ||
        !grid[i][j] || visited[i][j]) {
      return;
    }

    visited[i][j] = true;
    best.top = Math.min(best.top, i);
    best.bottom = Math.max(best.bottom, i);
    best.left = Math.min(best.left, j);
    best.right = Math.max(best.right, j);

    for (let di = -1; di < 2; di++) {
      for (let dj = -1; dj < 2; dj++) {
        if (di !== 0 || dj !== 0) {
          flood(i + di, j + dj, best);
        }
      }
    }
  };

  const boxes = [];
  const visited = [...Array(grid.length)]
    .map((_, i) => [...Array(grid[i].length)].fill(false));

  for (let i = 0; i < grid.length; i++) {
    for (let j = 0; j < grid[i].length; j++) {
      if (!grid[i][j] || visited[i][j]) {
        continue;
      }

      const best = {top: i, bottom: i, left: j, right: j};
      flood(i, j, best);
      boxes.push({
        topLeft: {x: best.left, y: best.top},
        topRight: {x: best.right, y: best.top},
        bottomRight: {x: best.right, y: best.bottom},
        bottomLeft: {x: best.left, y: best.bottom},
      });
    }
  }

  return boxes;
};

const canvas = document.createElement("canvas");
canvas.style.border = "1px solid blue";
document.body.appendChild(canvas);
const ctx = canvas.getContext("2d");
const img = new Image();
img.onload = function() {
  const {width: w, height: h} = this;
  canvas.width = w;
  canvas.height = h;
  ctx.drawImage(this, 0, 0, w, h);
  const {data} = ctx.getImageData(0, 0, w, h);
  const grid = [...Array(h)].map((_, i) => 
    [...Array(w)].map((_, j) => data[(i*w+j)*4] < 255 ? 1 : 0)
  );
  const pad = 1;
  ctx.strokeStyle = "red";

  for (const box of findBoundingBoxes(grid)) {
    const w = box.topRight.x - box.topLeft.x;
    const h = box.bottomLeft.y - box.topLeft.y;
    ctx.strokeRect(
      box.topLeft.x - pad + 0.5,
      box.topLeft.y - pad + 0.5,
      w + pad * 2, h + pad * 2
    );
  }
};
img.src = "";