如何将 HTML/URL 中的下拉选择菜单元素转换为 Pandas Dataframe?
How to convert a dropdown selection menu element in HTML/URL to Pandas Dataframe?
在创建用于匹配和提取 ID 和 SubID 及其名称的数据集时,从请求模块获取文件后,我在 HTML 中有以下代码 -
<div class="feature">
<h5>Network</h5>
<div>
<div class="row">
<ul class="tree network-tree">
<li class="classification class-C ">
<span>
<input type="checkbox" >
<a href="/network/nt06410+N01032+N01031" target="_blank">nt06410</a> Calcium signaling
</span>
<ul>
<li class="entry class-D network ">
<span>
<input type="checkbox" >
<a href="/entry/N01032" data-entry="N01032" target="_blank">N01032</a>
Mutation-inactivated PRKN to mGluR1 signaling pathway
</span>
</li>
<li class="entry class-D network ">
<span>
<input type="checkbox" >
<a href="/entry/N01031" data-entry="N01031" target="_blank">N01031</a>
Mutation-caused aberrant SNCA to VGCC-Ca2+ -apoptotic pathway
</span>
</li>
</ul>
</li>
我想要做的是获取这个特定的下拉选择菜单,突出显示特定链接到 pandas 数据框 -
ID
Name
Subname
SubID
Network
nt06410
Calcium signaling
Mutation-inactivated PRKN to mGluR1 signaling pathway
N01032
nt06410+N01032+N01031
到目前为止我的代码是 -
data = soup.find_all("ul", {"class": "tree network-tree"})
# get all list elements
lis = data[0].find_all('li')
# add a helper lambda, just for readability
find_ul = lambda x: x.find_all('ul')
uls = [find_ul(elem) for elem in lis if find_ul(elem) != []]
# use a nested list comprehension to iterate over the <ul> tags
# and extract text from each <li> into sublists
text = [[li.text.encode('utf-8') for li in ul[0].find_all('li')] for ul in uls]
print(text[0][1])
您可以使用嵌套的 for 循环并将项目追加到列表中。您将在外循环中重复项目,例如内部循环中每个实例的 ID,例如子ID
将列表列表转换为末尾带有 pandas 的 DataFrame。
results = []
for network in soup.select('.row .classification'):
a = network.select_one('a')
_id = a.text
_network = a['href'].split('network/')[-1]
name = a.next_sibling.strip()
for pathway in network.select('.network'):
b = pathway.select_one('a')
subname = b.next_sibling.strip()
subid = b.text
results.append([_id, name, subname, subid, _network])
df = pd.DataFrame(results, columns = ['ID', 'Name', 'Subname', 'SubID', 'Network'])
使用相关 link 测试:https://www.kegg.jp/pathway/hsa05022
N.B。 KEGG 提供免费的 JSON 层次结构下载。
在创建用于匹配和提取 ID 和 SubID 及其名称的数据集时,从请求模块获取文件后,我在 HTML 中有以下代码 -
<div class="feature">
<h5>Network</h5>
<div>
<div class="row">
<ul class="tree network-tree">
<li class="classification class-C ">
<span>
<input type="checkbox" >
<a href="/network/nt06410+N01032+N01031" target="_blank">nt06410</a> Calcium signaling
</span>
<ul>
<li class="entry class-D network ">
<span>
<input type="checkbox" >
<a href="/entry/N01032" data-entry="N01032" target="_blank">N01032</a>
Mutation-inactivated PRKN to mGluR1 signaling pathway
</span>
</li>
<li class="entry class-D network ">
<span>
<input type="checkbox" >
<a href="/entry/N01031" data-entry="N01031" target="_blank">N01031</a>
Mutation-caused aberrant SNCA to VGCC-Ca2+ -apoptotic pathway
</span>
</li>
</ul>
</li>
我想要做的是获取这个特定的下拉选择菜单,突出显示特定链接到 pandas 数据框 -
ID | Name | Subname | SubID | Network |
---|---|---|---|---|
nt06410 | Calcium signaling | Mutation-inactivated PRKN to mGluR1 signaling pathway | N01032 | nt06410+N01032+N01031 |
到目前为止我的代码是 -
data = soup.find_all("ul", {"class": "tree network-tree"})
# get all list elements
lis = data[0].find_all('li')
# add a helper lambda, just for readability
find_ul = lambda x: x.find_all('ul')
uls = [find_ul(elem) for elem in lis if find_ul(elem) != []]
# use a nested list comprehension to iterate over the <ul> tags
# and extract text from each <li> into sublists
text = [[li.text.encode('utf-8') for li in ul[0].find_all('li')] for ul in uls]
print(text[0][1])
您可以使用嵌套的 for 循环并将项目追加到列表中。您将在外循环中重复项目,例如内部循环中每个实例的 ID,例如子ID 将列表列表转换为末尾带有 pandas 的 DataFrame。
results = []
for network in soup.select('.row .classification'):
a = network.select_one('a')
_id = a.text
_network = a['href'].split('network/')[-1]
name = a.next_sibling.strip()
for pathway in network.select('.network'):
b = pathway.select_one('a')
subname = b.next_sibling.strip()
subid = b.text
results.append([_id, name, subname, subid, _network])
df = pd.DataFrame(results, columns = ['ID', 'Name', 'Subname', 'SubID', 'Network'])
使用相关 link 测试:https://www.kegg.jp/pathway/hsa05022
N.B。 KEGG 提供免费的 JSON 层次结构下载。