在 Python 中自动将文本添加到 matplotlib 图
Automatic add text to matplotlib plot in Python
我尝试制作一个图,并希望自动将文本(在本例中为百分比)添加到与每个 y 轴类型相对应的每个圆圈。任何帮助都会很有帮助。
# import libraries
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
# Make some data
index=['Stream flow',
'Soil moisture',
'Water indices',
'Others',
'Temperature',
'Precipitation',
'Vegetative indices']
value=[2.13, 6.38, 10.64, 12.77, 17.73, 21.99, 28.37]
# create dataframe
percentages = pd.Series(value,index=index)
df = pd.DataFrame({'percentage' : percentages})
df = df.sort_values(by='percentage')
# we first need a numeric placeholder for the y axis
my_range=list(range(1,len(df.index)+1))
fig, ax = plt.subplots(figsize=(15,8))
# create for each expense type an horizontal line that starts at x = 0 with the length
plt.hlines(y=my_range, xmin=0, xmax=df['percentage']-0.5, color='black', alpha=0.8, linewidth=1)
# create for each expense type a dot at the level of the expense percentage value
line=plt.plot(df['percentage'], my_range, "o", markersize=30, color='#fd8c00', alpha=0.6, linewidth=0.3)
# set labels
ax.set_xlabel('Percentage', fontsize=15)
ax.set_ylabel('')
# set axis
ax.tick_params(axis='both', which='major', labelsize=14)
plt.yticks(my_range, df.index)
ax.set_xlim(0,30)
您可以使用 matplotlib.axes.Axes.text
:
x_space = 0.4
y_space = 0.05
fontsize = 7
for y_i, val in enumerate(value, 1):
ax.text(x = val - x_space, y = y_i - y_space, s = f'{val}%', fontsize = fontsize)
您必须调整 x_space
、y_space
和 fontsize
才能使文本正确适合圆圈。
完整代码
# import libraries
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
# Make some data
index=['Stream flow',
'Soil moisture',
'Water indices',
'Others',
'Temperature',
'Precipitation',
'Vegetative indices']
value=[2.13, 6.38, 10.64, 12.77, 17.73, 21.99, 28.37]
# create dataframe
percentages = pd.Series(value,index=index)
df = pd.DataFrame({'percentage' : percentages})
df = df.sort_values(by='percentage')
# we first need a numeric placeholder for the y axis
my_range=list(range(1,len(df.index)+1))
fig, ax = plt.subplots(figsize=(15,8))
# create for each expense type an horizontal line that starts at x = 0 with the length
plt.hlines(y=my_range, xmin=0, xmax=df['percentage']-0.5, color='black', alpha=0.8, linewidth=1)
# create for each expense type a dot at the level of the expense percentage value
line=plt.plot(df['percentage'], my_range, "o", markersize=30, color='#fd8c00', alpha=0.6, linewidth=0.3)
# set labels
ax.set_xlabel('Percentage', fontsize=15)
ax.set_ylabel('')
# set axis
ax.tick_params(axis='both', which='major', labelsize=14)
plt.yticks(my_range, df.index)
ax.set_xlim(0,30)
x_space = 0.4
y_space = 0.05
for y_i, val in enumerate(value, 1):
ax.text(x = val - x_space, y = y_i - y_space, s = f'{val:>5.2f}%', fontsize = 7)
plt.show()
与上面的代码相同,但增加了圆半径和字体,以提高可读性。
# import libraries
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
# Make some data
index=['Stream flow',
'Soil moisture',
'Water indices',
'Others',
'Temperature',
'Precipitation',
'Vegetative indices']
value=[2.13, 6.38, 10.64, 12.77, 17.73, 21.99, 28.37]
# create dataframe
percentages = pd.Series(value,index=index)
df = pd.DataFrame({'percentage' : percentages})
df = df.sort_values(by='percentage')
# we first need a numeric placeholder for the y axis
my_range=list(range(1,len(df.index)+1))
fig, ax = plt.subplots(figsize=(15,8))
# create for each expense type an horizontal line that starts at x = 0 with the length
plt.hlines(y=my_range, xmin=0, xmax=df['percentage']-0.85, color='black', alpha=0.8, linewidth=1)
# create for each expense type a dot at the level of the expense percentage value
line=plt.plot(df['percentage'], my_range, "o", markersize=50, color='#fd8c00', alpha=0.6, linewidth=0.3)
# set labels
ax.set_xlabel('Percentage', fontsize=15)
ax.set_ylabel('')
# set axis
ax.tick_params(axis='both', which='major', labelsize=14)
plt.yticks(my_range, df.index)
ax.set_xlim(0,30)
ax.set_ylim(0, len(value) + 1)
x_space = 0.75
y_space = 0.06
fontsize = 12
for y_i, val in enumerate(value, 1):
ax.text(x = val - x_space, y = y_i - y_space, s = f'{val:>5.2f}%', fontsize = fontsize)
plt.show()
更好的是,您可以使用 matplotlib.axes.Axes.annotate
来摆脱 x_space
和 y_space
:
fontsize = 12
for y_i, x_i in enumerate(value, 1):
ax.annotate(f'{x_i:>5.2f}%', xy = (x_i, y_i), xytext = (0, 0), textcoords = 'offset points', ha = 'center', va = 'center', fontsize = fontsize)
您仍然需要调整 fontsize
以适合圆的半径。
我尝试制作一个图,并希望自动将文本(在本例中为百分比)添加到与每个 y 轴类型相对应的每个圆圈。任何帮助都会很有帮助。
# import libraries
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
# Make some data
index=['Stream flow',
'Soil moisture',
'Water indices',
'Others',
'Temperature',
'Precipitation',
'Vegetative indices']
value=[2.13, 6.38, 10.64, 12.77, 17.73, 21.99, 28.37]
# create dataframe
percentages = pd.Series(value,index=index)
df = pd.DataFrame({'percentage' : percentages})
df = df.sort_values(by='percentage')
# we first need a numeric placeholder for the y axis
my_range=list(range(1,len(df.index)+1))
fig, ax = plt.subplots(figsize=(15,8))
# create for each expense type an horizontal line that starts at x = 0 with the length
plt.hlines(y=my_range, xmin=0, xmax=df['percentage']-0.5, color='black', alpha=0.8, linewidth=1)
# create for each expense type a dot at the level of the expense percentage value
line=plt.plot(df['percentage'], my_range, "o", markersize=30, color='#fd8c00', alpha=0.6, linewidth=0.3)
# set labels
ax.set_xlabel('Percentage', fontsize=15)
ax.set_ylabel('')
# set axis
ax.tick_params(axis='both', which='major', labelsize=14)
plt.yticks(my_range, df.index)
ax.set_xlim(0,30)
您可以使用 matplotlib.axes.Axes.text
:
x_space = 0.4
y_space = 0.05
fontsize = 7
for y_i, val in enumerate(value, 1):
ax.text(x = val - x_space, y = y_i - y_space, s = f'{val}%', fontsize = fontsize)
您必须调整 x_space
、y_space
和 fontsize
才能使文本正确适合圆圈。
完整代码
# import libraries
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
# Make some data
index=['Stream flow',
'Soil moisture',
'Water indices',
'Others',
'Temperature',
'Precipitation',
'Vegetative indices']
value=[2.13, 6.38, 10.64, 12.77, 17.73, 21.99, 28.37]
# create dataframe
percentages = pd.Series(value,index=index)
df = pd.DataFrame({'percentage' : percentages})
df = df.sort_values(by='percentage')
# we first need a numeric placeholder for the y axis
my_range=list(range(1,len(df.index)+1))
fig, ax = plt.subplots(figsize=(15,8))
# create for each expense type an horizontal line that starts at x = 0 with the length
plt.hlines(y=my_range, xmin=0, xmax=df['percentage']-0.5, color='black', alpha=0.8, linewidth=1)
# create for each expense type a dot at the level of the expense percentage value
line=plt.plot(df['percentage'], my_range, "o", markersize=30, color='#fd8c00', alpha=0.6, linewidth=0.3)
# set labels
ax.set_xlabel('Percentage', fontsize=15)
ax.set_ylabel('')
# set axis
ax.tick_params(axis='both', which='major', labelsize=14)
plt.yticks(my_range, df.index)
ax.set_xlim(0,30)
x_space = 0.4
y_space = 0.05
for y_i, val in enumerate(value, 1):
ax.text(x = val - x_space, y = y_i - y_space, s = f'{val:>5.2f}%', fontsize = 7)
plt.show()
与上面的代码相同,但增加了圆半径和字体,以提高可读性。
# import libraries
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
# Make some data
index=['Stream flow',
'Soil moisture',
'Water indices',
'Others',
'Temperature',
'Precipitation',
'Vegetative indices']
value=[2.13, 6.38, 10.64, 12.77, 17.73, 21.99, 28.37]
# create dataframe
percentages = pd.Series(value,index=index)
df = pd.DataFrame({'percentage' : percentages})
df = df.sort_values(by='percentage')
# we first need a numeric placeholder for the y axis
my_range=list(range(1,len(df.index)+1))
fig, ax = plt.subplots(figsize=(15,8))
# create for each expense type an horizontal line that starts at x = 0 with the length
plt.hlines(y=my_range, xmin=0, xmax=df['percentage']-0.85, color='black', alpha=0.8, linewidth=1)
# create for each expense type a dot at the level of the expense percentage value
line=plt.plot(df['percentage'], my_range, "o", markersize=50, color='#fd8c00', alpha=0.6, linewidth=0.3)
# set labels
ax.set_xlabel('Percentage', fontsize=15)
ax.set_ylabel('')
# set axis
ax.tick_params(axis='both', which='major', labelsize=14)
plt.yticks(my_range, df.index)
ax.set_xlim(0,30)
ax.set_ylim(0, len(value) + 1)
x_space = 0.75
y_space = 0.06
fontsize = 12
for y_i, val in enumerate(value, 1):
ax.text(x = val - x_space, y = y_i - y_space, s = f'{val:>5.2f}%', fontsize = fontsize)
plt.show()
更好的是,您可以使用 matplotlib.axes.Axes.annotate
来摆脱 x_space
和 y_space
:
fontsize = 12
for y_i, x_i in enumerate(value, 1):
ax.annotate(f'{x_i:>5.2f}%', xy = (x_i, y_i), xytext = (0, 0), textcoords = 'offset points', ha = 'center', va = 'center', fontsize = fontsize)
您仍然需要调整 fontsize
以适合圆的半径。