在 PyTorch 中使用阈值进行训练
Training with threshold in PyTorch
我有一个神经网络,它在输入时产生单一值。我需要使用网络返回的这个值来阈值另一个数组。该阈值操作的结果用于计算损失函数(阈值的值事先未知,需要通过训练得出)。
以下是一个 MWE
import torch
x = torch.randn(10, 1) # Say this is the output of the network (10 is my batch size)
data_array = torch.randn(10, 2) # This is the data I need to threshold
ground_truth = torch.randn(10, 2) # This is the ground truth
mse_loss = torch.nn.MSELoss() # Loss function
# Threshold
thresholded_vals = data_array * (data_array >= x) # Returns zero in all places where the value is less than the threshold, the value itself otherwise
# Compute loss and gradients
loss = mse_loss(thresholded_vals, ground_truth)
loss.backward() # Throws error here
由于阈值操作 returns 一个没有任何梯度的张量数组 backward()
操作抛出错误。
在这种情况下如何训练网络?
您的阈值函数在阈值中不可微分,因此 torch
不会计算阈值的梯度,这就是您的示例不起作用的原因。
import torch
x = torch.randn(10, 1, requires_grad=True) # Say this is the output of the network (10 is my batch size)
data_array = torch.randn(10, 2, requires_grad=True) # This is the data I need to threshold
ground_truth = torch.randn(10, 2) # This is the ground truth
mse_loss = torch.nn.MSELoss() # Loss function
# Threshold
thresholded_vals = data_array * (data_array >= x) # Returns zero in all places where the value is less than the threshold, the value itself otherwise
# Compute loss and gradients
loss = mse_loss(thresholded_vals, ground_truth)
loss.backward() # Throws error here
print(x.grad)
print(data_array.grad)
输出:
None #<- for the threshold x
tensor([[ 0.1088, -0.0617], #<- for the data_array
[ 0.1011, 0.0000],
[ 0.0000, 0.0000],
[-0.0000, -0.0000],
[ 0.2047, 0.0973],
[-0.0000, 0.2197],
[-0.0000, 0.0929],
[ 0.1106, 0.2579],
[ 0.0743, 0.0880],
[ 0.0000, 0.1112]])
我有一个神经网络,它在输入时产生单一值。我需要使用网络返回的这个值来阈值另一个数组。该阈值操作的结果用于计算损失函数(阈值的值事先未知,需要通过训练得出)。 以下是一个 MWE
import torch
x = torch.randn(10, 1) # Say this is the output of the network (10 is my batch size)
data_array = torch.randn(10, 2) # This is the data I need to threshold
ground_truth = torch.randn(10, 2) # This is the ground truth
mse_loss = torch.nn.MSELoss() # Loss function
# Threshold
thresholded_vals = data_array * (data_array >= x) # Returns zero in all places where the value is less than the threshold, the value itself otherwise
# Compute loss and gradients
loss = mse_loss(thresholded_vals, ground_truth)
loss.backward() # Throws error here
由于阈值操作 returns 一个没有任何梯度的张量数组 backward()
操作抛出错误。
在这种情况下如何训练网络?
您的阈值函数在阈值中不可微分,因此 torch
不会计算阈值的梯度,这就是您的示例不起作用的原因。
import torch
x = torch.randn(10, 1, requires_grad=True) # Say this is the output of the network (10 is my batch size)
data_array = torch.randn(10, 2, requires_grad=True) # This is the data I need to threshold
ground_truth = torch.randn(10, 2) # This is the ground truth
mse_loss = torch.nn.MSELoss() # Loss function
# Threshold
thresholded_vals = data_array * (data_array >= x) # Returns zero in all places where the value is less than the threshold, the value itself otherwise
# Compute loss and gradients
loss = mse_loss(thresholded_vals, ground_truth)
loss.backward() # Throws error here
print(x.grad)
print(data_array.grad)
输出:
None #<- for the threshold x
tensor([[ 0.1088, -0.0617], #<- for the data_array
[ 0.1011, 0.0000],
[ 0.0000, 0.0000],
[-0.0000, -0.0000],
[ 0.2047, 0.0973],
[-0.0000, 0.2197],
[-0.0000, 0.0929],
[ 0.1106, 0.2579],
[ 0.0743, 0.0880],
[ 0.0000, 0.1112]])