RuntimeError: mat1 and mat2 shapes cannot be multiplied (25x340 and 360x1)
RuntimeError: mat1 and mat2 shapes cannot be multiplied (25x340 and 360x1)
我收到此错误消息,但不确定原因。我的输入是 (batch, 1, 312) 来自表格数据,这个 CNN 是为回归预测而构建的。我使用公式 (input + 2*padding - filter size)/stride + 1
计算出每一步的形状,如下面的评论所示。问题似乎出现在 x = self.fc(x)
,我不明白为什么。非常感谢您的帮助。谢谢。
class CNNWeather(nn.Module):
# input (batch, 1, 312)
def __init__(self):
super(CNNWeather, self).__init__()
self.conv1 = nn.Conv1d(in_channels=1, out_channels=8, kernel_size=9, stride=1, padding='valid') # (312+2*0-9)/1 + 1 = 304
self.pool1 = nn.AvgPool1d(kernel_size=2, stride=2) # 304/2 = 302
self.conv2 = nn.Conv1d(in_channels=8, out_channels=12, kernel_size=3, stride=1, padding='valid') # (302-3)/1+1 = 300
self.pool2 = nn.AvgPool1d(kernel_size=2, stride=2) # 300/2 = 150
self.conv3 = nn.Conv1d(in_channels=12, out_channels=16, kernel_size=3, stride=1, padding='valid') # (150-3)/1+1 = 76
self.pool3 = nn.AvgPool1d(kernel_size=2, stride=2) # 76/2 = 38
self.conv4 = nn.Conv1d(in_channels=16, out_channels=20, kernel_size=3, stride=1, padding='valid') # (38-3)/1+1 = 36
self.pool4 = nn.AvgPool1d(kernel_size=2, stride=2) # 36/2 = 18 (batch, 20, 18)
self.fc = nn.Linear(in_features=20*18, out_features=1)
def forward(self, x):
x = self.pool1(F.relu(self.conv1(x)))
x = self.pool2(F.relu(self.conv2(x)))
x = self.pool3(F.relu(self.conv3(x)))
x = self.pool4(F.relu(self.conv4(x)))
print(x.size())
x = x.view(x.size(0), -1) # flatten (batch, 20*18)
x = self.fc(x)
return x
问题好像和你的FC层的输入大小有关:
self.fc = nn.Linear(in_features=20*18, out_features=1)
上一层的输出是340,所以必须用in_features=340
。
这些是第三层和第四层的输出形状。
torch.Size([5, 16, 73]) conv3 out
torch.Size([5, 16, 36]) pool3 out
torch.Size([5, 20, 34]) conv4 out
torch.Size([5, 20, 17]) pool4 out
请注意,从“pool4”层出来的是 20x17,这意味着 340 个元素。
我收到此错误消息,但不确定原因。我的输入是 (batch, 1, 312) 来自表格数据,这个 CNN 是为回归预测而构建的。我使用公式 (input + 2*padding - filter size)/stride + 1
计算出每一步的形状,如下面的评论所示。问题似乎出现在 x = self.fc(x)
,我不明白为什么。非常感谢您的帮助。谢谢。
class CNNWeather(nn.Module):
# input (batch, 1, 312)
def __init__(self):
super(CNNWeather, self).__init__()
self.conv1 = nn.Conv1d(in_channels=1, out_channels=8, kernel_size=9, stride=1, padding='valid') # (312+2*0-9)/1 + 1 = 304
self.pool1 = nn.AvgPool1d(kernel_size=2, stride=2) # 304/2 = 302
self.conv2 = nn.Conv1d(in_channels=8, out_channels=12, kernel_size=3, stride=1, padding='valid') # (302-3)/1+1 = 300
self.pool2 = nn.AvgPool1d(kernel_size=2, stride=2) # 300/2 = 150
self.conv3 = nn.Conv1d(in_channels=12, out_channels=16, kernel_size=3, stride=1, padding='valid') # (150-3)/1+1 = 76
self.pool3 = nn.AvgPool1d(kernel_size=2, stride=2) # 76/2 = 38
self.conv4 = nn.Conv1d(in_channels=16, out_channels=20, kernel_size=3, stride=1, padding='valid') # (38-3)/1+1 = 36
self.pool4 = nn.AvgPool1d(kernel_size=2, stride=2) # 36/2 = 18 (batch, 20, 18)
self.fc = nn.Linear(in_features=20*18, out_features=1)
def forward(self, x):
x = self.pool1(F.relu(self.conv1(x)))
x = self.pool2(F.relu(self.conv2(x)))
x = self.pool3(F.relu(self.conv3(x)))
x = self.pool4(F.relu(self.conv4(x)))
print(x.size())
x = x.view(x.size(0), -1) # flatten (batch, 20*18)
x = self.fc(x)
return x
问题好像和你的FC层的输入大小有关:
self.fc = nn.Linear(in_features=20*18, out_features=1)
上一层的输出是340,所以必须用in_features=340
。
这些是第三层和第四层的输出形状。
torch.Size([5, 16, 73]) conv3 out
torch.Size([5, 16, 36]) pool3 out
torch.Size([5, 20, 34]) conv4 out
torch.Size([5, 20, 17]) pool4 out
请注意,从“pool4”层出来的是 20x17,这意味着 340 个元素。