如何在 Julia 中将稀疏矩阵转换为密集矩阵
How to convert sparse matrix to dense matrix in Julia
如何在 Julia 中将稀疏矩阵转换为密集矩阵?根据 this 我应该可以使用 full
或 Matrix
,但是 full
在 SparseArrays 模块中显然不是标准的,当我尝试使用 Matrix
:
I = []
J = []
A = []
for i in 1:3
push!(I, i)
push!(J, i^2)
push!(A, sqrt(i))
end
sarr = sparse(I, J, A, 10, 10)
arr = Matrix(sarr)
我收到这个错误:
Exception has occurred: MethodError
MethodError: no method matching zero(::Type{Any})
做collect(sarr)
或Matrix(sarr)
就够了。
但是请注意,您的代码使用了不推荐的无类型容器。数组中的索引是 Int
s 所以它应该是:
I = Int[]
J = Int[]
A = Float64[]
for i in 1:3
push!(I, i)
push!(J, i^2)
push!(A, sqrt(i))
end
sarr = sparse(I, J, A, 10, 10)
现在您可以:
julia> collect(sarr)
10×10 Matrix{Float64}:
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.41421 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.73205 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
如何在 Julia 中将稀疏矩阵转换为密集矩阵?根据 this 我应该可以使用 full
或 Matrix
,但是 full
在 SparseArrays 模块中显然不是标准的,当我尝试使用 Matrix
:
I = []
J = []
A = []
for i in 1:3
push!(I, i)
push!(J, i^2)
push!(A, sqrt(i))
end
sarr = sparse(I, J, A, 10, 10)
arr = Matrix(sarr)
我收到这个错误:
Exception has occurred: MethodError
MethodError: no method matching zero(::Type{Any})
做collect(sarr)
或Matrix(sarr)
就够了。
但是请注意,您的代码使用了不推荐的无类型容器。数组中的索引是 Int
s 所以它应该是:
I = Int[]
J = Int[]
A = Float64[]
for i in 1:3
push!(I, i)
push!(J, i^2)
push!(A, sqrt(i))
end
sarr = sparse(I, J, A, 10, 10)
现在您可以:
julia> collect(sarr)
10×10 Matrix{Float64}:
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.41421 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.73205 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0