层 "sequential_3" 的输入 0 与层不兼容: expected shape=(None, 256, 256, 3), found shape=(None, 324, 500, 3)
Input 0 of layer "sequential_3" is incompatible with the layer: expected shape=(None, 256, 256, 3), found shape=(None, 324, 500, 3)
我遇到了一个问题,如果有人可以提供帮助,请发表评论
input_shape=(BATCH_SIZE,256,256,3)
model=models.Sequential([
resize_and_rescale,
data_augmentation,
layers.Conv2D(32,(3,3), activation="relu", input_shape=input_shape),
layers.MaxPooling2D((2,2)),
layers.Conv2D(64,kernel_size=(3,3), activation="relu"),
layers.MaxPooling2D((2,2)),
layers.Conv2D(64,kernel_size=(3,3), activation="relu"),
layers.MaxPooling2D((2,2)),
layers.Conv2D(64,(3,3), activation="relu"),
layers.MaxPooling2D((2,2)),
layers.Conv2D(64,(3,3), activation="relu"),
layers.MaxPooling2D((2,2)),
layers.Conv2D(64,(3,3), activation="relu"),
layers.MaxPooling2D((2,2)),
layers.Flatten(),
layers.Dense(64,activation="relu"),
layers.Dense(n_classes, activation="softmax")
])
model.build(input_shape=input_shape)
这是我的模型,效果很好,但是当我 post 任何尺寸的图像不同于 postman
的 256,256 时
@app.post("/predict")
async def predict(
file: UploadFile = File(...)
):
image = read_file_as_image(await file.read())
img_batch = np.expand_dims(image, 0)
predictions = MODEL.predict(img_batch)
predicted_class = CLASS_NAMES[np.argmax(predictions[0])]
confidence = np.max(predictions[0])
return {
'class': predicted_class,
'confidence': float(confidence)
}
if __name__ == "__main__":
uvicorn.run(app, host='localhost', port=8000)
这就是我的禁食apireturns->
层“sequential_3”的输入 0 与层不兼容:预期形状=(None, 256, 256, 3),找到的形状=(None, 324 , 500, 3)
我尝试从 Pillow 调整图像大小但它没有用,我对 fastapi 了解不多所以如果有人知道如何解决这个错误
请评论。
什么是read_file_as_image(await file.read()),是你写的函数吗?
试试这个
import matplotlib.pyplot as plt
import cv2
img_path= define the full path to the image here
img=plt.imread(img_path)
img=cv2.resize(img, (256,256,3)
img=np.expand_dims(img, axis=0)
print (img.shape)
您需要在使用前调整图片大小:
import cv2
...
image = read_file_as_image(await file.read())
image = cv2.resize(image, (256,256,3))
img_batch = np.expand_dims(image, 0)
# OR
img_batch = image[None,...]
...
更多说明:
>>> import numpy as np
>>> a = np.array([[1,2],[2,3]])
>>> a.shape
(2, 2)
>>> a[None, ...].shape
(1, 2, 2)
>>> np.expand_dims(a, 0).shape
(1, 2, 2)
小修正,下面的代码不正确
img=cv2.resize(img, (256,256,3)
相反,您只需提及像素大小
img = cv2.resize(img, dsize = (256, 256))
我遇到了一个问题,如果有人可以提供帮助,请发表评论
input_shape=(BATCH_SIZE,256,256,3)
model=models.Sequential([
resize_and_rescale,
data_augmentation,
layers.Conv2D(32,(3,3), activation="relu", input_shape=input_shape),
layers.MaxPooling2D((2,2)),
layers.Conv2D(64,kernel_size=(3,3), activation="relu"),
layers.MaxPooling2D((2,2)),
layers.Conv2D(64,kernel_size=(3,3), activation="relu"),
layers.MaxPooling2D((2,2)),
layers.Conv2D(64,(3,3), activation="relu"),
layers.MaxPooling2D((2,2)),
layers.Conv2D(64,(3,3), activation="relu"),
layers.MaxPooling2D((2,2)),
layers.Conv2D(64,(3,3), activation="relu"),
layers.MaxPooling2D((2,2)),
layers.Flatten(),
layers.Dense(64,activation="relu"),
layers.Dense(n_classes, activation="softmax")
])
model.build(input_shape=input_shape)
这是我的模型,效果很好,但是当我 post 任何尺寸的图像不同于 postman
的 256,256 时@app.post("/predict")
async def predict(
file: UploadFile = File(...)
):
image = read_file_as_image(await file.read())
img_batch = np.expand_dims(image, 0)
predictions = MODEL.predict(img_batch)
predicted_class = CLASS_NAMES[np.argmax(predictions[0])]
confidence = np.max(predictions[0])
return {
'class': predicted_class,
'confidence': float(confidence)
}
if __name__ == "__main__":
uvicorn.run(app, host='localhost', port=8000)
这就是我的禁食apireturns->
层“sequential_3”的输入 0 与层不兼容:预期形状=(None, 256, 256, 3),找到的形状=(None, 324 , 500, 3)
我尝试从 Pillow 调整图像大小但它没有用,我对 fastapi 了解不多所以如果有人知道如何解决这个错误 请评论。
什么是read_file_as_image(await file.read()),是你写的函数吗? 试试这个
import matplotlib.pyplot as plt
import cv2
img_path= define the full path to the image here
img=plt.imread(img_path)
img=cv2.resize(img, (256,256,3)
img=np.expand_dims(img, axis=0)
print (img.shape)
您需要在使用前调整图片大小:
import cv2
...
image = read_file_as_image(await file.read())
image = cv2.resize(image, (256,256,3))
img_batch = np.expand_dims(image, 0)
# OR
img_batch = image[None,...]
...
更多说明:
>>> import numpy as np
>>> a = np.array([[1,2],[2,3]])
>>> a.shape
(2, 2)
>>> a[None, ...].shape
(1, 2, 2)
>>> np.expand_dims(a, 0).shape
(1, 2, 2)
小修正,下面的代码不正确 img=cv2.resize(img, (256,256,3)
相反,您只需提及像素大小 img = cv2.resize(img, dsize = (256, 256))