如何在 js 中将 2d 着色器应用于 webgl canvas?
How do I apply a 2d shader to a webgl canvas in js?
我希望我在这里没有采取错误的方法,但我觉得我在正确的轨道上,这应该不会太复杂。我想在屏幕上采用简单的 x 和 y 函数,return 将颜色应用到 webGL 的每个像素 canvas。
例如:f(x,y) -> rgb(x/canvasWidth,y/canvasHeight)
其中 x 和 y 是 canvas 上的位置,颜色是像素的颜色。
我的第一个想法是采用 this example 并对其进行修改,使矩形充满屏幕并且颜色与描述的一样。我认为这是通过修改顶点着色器使矩形覆盖 canvas 和片段着色器来实现颜色来实现的,但我不确定如何根据 window 大小应用顶点着色器或获取我在片段着色器上下文中的 x 和 y 变量。
这是我即将结束的教程的 shader code。除了手动更改片段着色器中的常量颜色并通过更改 intitBuffers 方法中的值来改变正方形之外,我没有尝试太多。
你在正确的轨道上,为了让四边形填满屏幕,你可以跳过顶点着色器中的所有矩阵变换,只需将标准化的设备坐标 (-1 ... +1) 直接输入 gl_Position
然后使用 gl_FragCoord
访问片段着色器中像素的位置。
您需要传入 canvas 宽度和 canvas 高度。您的片段着色器可能如下所示:
precision mediump float;
// Require resolution (canvas size) as an input
uniform vec3 uResolution;
void main() {
// Calculate relative coordinates (uv)
vec2 uv = gl_FragCoord.xy / uResolution.xy;
gl_FragColor = vec4(uv.x, uv.y, 0., 1.0);
}
然后根据@LJ 的回答,如果您真的希望片段覆盖整个 canvas,您可以修改顶点着色器以忽略法线矩阵变换:
void main() {
// Pass through each vertex position without transforming:
gl_Position = aVertexPosition;
}
下面的可运行示例主要是 copy-pasted 来自您链接的 example,稍作修改:
const canvas = document.querySelector('#glcanvas');
main();
//
// Start here
//
function main() {
const gl = canvas.getContext('webgl');
// If we don't have a GL context, give up now
if (!gl) {
alert('Unable to initialize WebGL. Your browser or machine may not support it.');
return;
}
// Vertex shader program
const vsSource = `
attribute vec4 aVertexPosition;
uniform mat4 uModelViewMatrix;
uniform mat4 uProjectionMatrix;
void main() {
// We don't need the projection:
//gl_Position = uProjectionMatrix * uModelViewMatrix * aVertexPosition;
// Instead we pass through each vertex position as-is:
gl_Position = aVertexPosition;
}
`;
// Fragment shader program
const fsSource = `
precision mediump float;
// Require resolution (canvas size) as an input
uniform vec3 uResolution;
void main() {
// Calculate relative coordinates (uv)
vec2 uv = gl_FragCoord.xy / uResolution.xy;
gl_FragColor = vec4(uv.x, uv.y, 0., 1.0);
}
`;
// Initialize a shader program; this is where all the lighting
// for the vertices and so forth is established.
const shaderProgram = initShaderProgram(gl, vsSource, fsSource);
// Collect all the info needed to use the shader program.
// Look up which attribute our shader program is using
// for aVertexPosition and look up uniform locations.
const programInfo = {
program: shaderProgram,
attribLocations: {
vertexPosition: gl.getAttribLocation(shaderProgram, 'aVertexPosition'),
},
uniformLocations: {
projectionMatrix: gl.getUniformLocation(shaderProgram, 'uProjectionMatrix'),
modelViewMatrix: gl.getUniformLocation(shaderProgram, 'uModelViewMatrix'),
resolution: gl.getUniformLocation(shaderProgram, 'uResolution'),
},
};
// Here's where we call the routine that builds all the
// objects we'll be drawing.
const buffers = initBuffers(gl);
// Draw the scene
drawScene(gl, programInfo, buffers);
}
//
// initBuffers
//
// Initialize the buffers we'll need. For this demo, we just
// have one object -- a simple two-dimensional square.
//
function initBuffers(gl) {
// Create a buffer for the square's positions.
const positionBuffer = gl.createBuffer();
// Select the positionBuffer as the one to apply buffer
// operations to from here out.
gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
// Now create an array of positions for the square.
const positions = [
1.0, 1.0,
-1.0, 1.0,
1.0, -1.0,
-1.0, -1.0,
];
// Now pass the list of positions into WebGL to build the
// shape. We do this by creating a Float32Array from the
// JavaScript array, then use it to fill the current buffer.
gl.bufferData(gl.ARRAY_BUFFER,
new Float32Array(positions),
gl.STATIC_DRAW);
return {
position: positionBuffer,
};
}
//
// Draw the scene.
//
function drawScene(gl, programInfo, buffers) {
gl.clearColor(0.0, 0.0, 0.0, 1.0); // Clear to black, fully opaque
gl.clearDepth(1.0); // Clear everything
gl.enable(gl.DEPTH_TEST); // Enable depth testing
gl.depthFunc(gl.LEQUAL); // Near things obscure far things
// Clear the canvas before we start drawing on it.
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
// Create a perspective matrix, a special matrix that is
// used to simulate the distortion of perspective in a camera.
// Our field of view is 45 degrees, with a width/height
// ratio that matches the display size of the canvas
// and we only want to see objects between 0.1 units
// and 100 units away from the camera.
const fieldOfView = 45 * Math.PI / 180; // in radians
const aspect = gl.canvas.clientWidth / gl.canvas.clientHeight;
const zNear = 0.1;
const zFar = 100.0;
const projectionMatrix = mat4.create();
// note: glmatrix.js always has the first argument
// as the destination to receive the result.
mat4.perspective(projectionMatrix,
fieldOfView,
aspect,
zNear,
zFar);
// Set the drawing position to the "identity" point, which is
// the center of the scene.
const modelViewMatrix = mat4.create();
// Now move the drawing position a bit to where we want to
// start drawing the square.
mat4.translate(modelViewMatrix, // destination matrix
modelViewMatrix, // matrix to translate
[-0.0, 0.0, -6]); // amount to translate
// Tell WebGL how to pull out the positions from the position
// buffer into the vertexPosition attribute.
{
const numComponents = 2;
const type = gl.FLOAT;
const normalize = false;
const stride = 0;
const offset = 0;
gl.bindBuffer(gl.ARRAY_BUFFER, buffers.position);
gl.vertexAttribPointer(
programInfo.attribLocations.vertexPosition,
numComponents,
type,
normalize,
stride,
offset);
gl.enableVertexAttribArray(
programInfo.attribLocations.vertexPosition);
}
// Tell WebGL to use our program when drawing
gl.useProgram(programInfo.program);
// Set the shader uniforms
gl.uniformMatrix4fv(
programInfo.uniformLocations.projectionMatrix,
false,
projectionMatrix);
gl.uniformMatrix4fv(
programInfo.uniformLocations.modelViewMatrix,
false,
modelViewMatrix);
gl.uniform3f(programInfo.uniformLocations.resolution, canvas.width, canvas.height, 1.0);
{
const offset = 0;
const vertexCount = 4;
gl.drawArrays(gl.TRIANGLE_STRIP, offset, vertexCount);
}
}
//
// Initialize a shader program, so WebGL knows how to draw our data
//
function initShaderProgram(gl, vsSource, fsSource) {
const vertexShader = loadShader(gl, gl.VERTEX_SHADER, vsSource);
const fragmentShader = loadShader(gl, gl.FRAGMENT_SHADER, fsSource);
// Create the shader program
const shaderProgram = gl.createProgram();
gl.attachShader(shaderProgram, vertexShader);
gl.attachShader(shaderProgram, fragmentShader);
gl.linkProgram(shaderProgram);
// If creating the shader program failed, alert
if (!gl.getProgramParameter(shaderProgram, gl.LINK_STATUS)) {
alert('Unable to initialize the shader program: ' + gl.getProgramInfoLog(shaderProgram));
return null;
}
return shaderProgram;
}
//
// creates a shader of the given type, uploads the source and
// compiles it.
//
function loadShader(gl, type, source) {
const shader = gl.createShader(type);
// Send the source to the shader object
gl.shaderSource(shader, source);
// Compile the shader program
gl.compileShader(shader);
// See if it compiled successfully
if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {
alert('An error occurred compiling the shaders: ' + gl.getShaderInfoLog(shader));
gl.deleteShader(shader);
return null;
}
return shader;
}
canvas {
border: 2px solid black;
background-color: black;
}
video {
display: none;
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/gl-matrix/2.8.1/gl-matrix-min.js"></script>
<body>
<canvas id="glcanvas" width="640" height="480"></canvas>
</body>
故障相同:
我希望我在这里没有采取错误的方法,但我觉得我在正确的轨道上,这应该不会太复杂。我想在屏幕上采用简单的 x 和 y 函数,return 将颜色应用到 webGL 的每个像素 canvas。
例如:f(x,y) -> rgb(x/canvasWidth,y/canvasHeight)
其中 x 和 y 是 canvas 上的位置,颜色是像素的颜色。
我的第一个想法是采用 this example 并对其进行修改,使矩形充满屏幕并且颜色与描述的一样。我认为这是通过修改顶点着色器使矩形覆盖 canvas 和片段着色器来实现颜色来实现的,但我不确定如何根据 window 大小应用顶点着色器或获取我在片段着色器上下文中的 x 和 y 变量。
这是我即将结束的教程的 shader code。除了手动更改片段着色器中的常量颜色并通过更改 intitBuffers 方法中的值来改变正方形之外,我没有尝试太多。
你在正确的轨道上,为了让四边形填满屏幕,你可以跳过顶点着色器中的所有矩阵变换,只需将标准化的设备坐标 (-1 ... +1) 直接输入 gl_Position
然后使用 gl_FragCoord
访问片段着色器中像素的位置。
您需要传入 canvas 宽度和 canvas 高度。您的片段着色器可能如下所示:
precision mediump float;
// Require resolution (canvas size) as an input
uniform vec3 uResolution;
void main() {
// Calculate relative coordinates (uv)
vec2 uv = gl_FragCoord.xy / uResolution.xy;
gl_FragColor = vec4(uv.x, uv.y, 0., 1.0);
}
然后根据@LJ 的回答,如果您真的希望片段覆盖整个 canvas,您可以修改顶点着色器以忽略法线矩阵变换:
void main() {
// Pass through each vertex position without transforming:
gl_Position = aVertexPosition;
}
下面的可运行示例主要是 copy-pasted 来自您链接的 example,稍作修改:
const canvas = document.querySelector('#glcanvas');
main();
//
// Start here
//
function main() {
const gl = canvas.getContext('webgl');
// If we don't have a GL context, give up now
if (!gl) {
alert('Unable to initialize WebGL. Your browser or machine may not support it.');
return;
}
// Vertex shader program
const vsSource = `
attribute vec4 aVertexPosition;
uniform mat4 uModelViewMatrix;
uniform mat4 uProjectionMatrix;
void main() {
// We don't need the projection:
//gl_Position = uProjectionMatrix * uModelViewMatrix * aVertexPosition;
// Instead we pass through each vertex position as-is:
gl_Position = aVertexPosition;
}
`;
// Fragment shader program
const fsSource = `
precision mediump float;
// Require resolution (canvas size) as an input
uniform vec3 uResolution;
void main() {
// Calculate relative coordinates (uv)
vec2 uv = gl_FragCoord.xy / uResolution.xy;
gl_FragColor = vec4(uv.x, uv.y, 0., 1.0);
}
`;
// Initialize a shader program; this is where all the lighting
// for the vertices and so forth is established.
const shaderProgram = initShaderProgram(gl, vsSource, fsSource);
// Collect all the info needed to use the shader program.
// Look up which attribute our shader program is using
// for aVertexPosition and look up uniform locations.
const programInfo = {
program: shaderProgram,
attribLocations: {
vertexPosition: gl.getAttribLocation(shaderProgram, 'aVertexPosition'),
},
uniformLocations: {
projectionMatrix: gl.getUniformLocation(shaderProgram, 'uProjectionMatrix'),
modelViewMatrix: gl.getUniformLocation(shaderProgram, 'uModelViewMatrix'),
resolution: gl.getUniformLocation(shaderProgram, 'uResolution'),
},
};
// Here's where we call the routine that builds all the
// objects we'll be drawing.
const buffers = initBuffers(gl);
// Draw the scene
drawScene(gl, programInfo, buffers);
}
//
// initBuffers
//
// Initialize the buffers we'll need. For this demo, we just
// have one object -- a simple two-dimensional square.
//
function initBuffers(gl) {
// Create a buffer for the square's positions.
const positionBuffer = gl.createBuffer();
// Select the positionBuffer as the one to apply buffer
// operations to from here out.
gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
// Now create an array of positions for the square.
const positions = [
1.0, 1.0,
-1.0, 1.0,
1.0, -1.0,
-1.0, -1.0,
];
// Now pass the list of positions into WebGL to build the
// shape. We do this by creating a Float32Array from the
// JavaScript array, then use it to fill the current buffer.
gl.bufferData(gl.ARRAY_BUFFER,
new Float32Array(positions),
gl.STATIC_DRAW);
return {
position: positionBuffer,
};
}
//
// Draw the scene.
//
function drawScene(gl, programInfo, buffers) {
gl.clearColor(0.0, 0.0, 0.0, 1.0); // Clear to black, fully opaque
gl.clearDepth(1.0); // Clear everything
gl.enable(gl.DEPTH_TEST); // Enable depth testing
gl.depthFunc(gl.LEQUAL); // Near things obscure far things
// Clear the canvas before we start drawing on it.
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
// Create a perspective matrix, a special matrix that is
// used to simulate the distortion of perspective in a camera.
// Our field of view is 45 degrees, with a width/height
// ratio that matches the display size of the canvas
// and we only want to see objects between 0.1 units
// and 100 units away from the camera.
const fieldOfView = 45 * Math.PI / 180; // in radians
const aspect = gl.canvas.clientWidth / gl.canvas.clientHeight;
const zNear = 0.1;
const zFar = 100.0;
const projectionMatrix = mat4.create();
// note: glmatrix.js always has the first argument
// as the destination to receive the result.
mat4.perspective(projectionMatrix,
fieldOfView,
aspect,
zNear,
zFar);
// Set the drawing position to the "identity" point, which is
// the center of the scene.
const modelViewMatrix = mat4.create();
// Now move the drawing position a bit to where we want to
// start drawing the square.
mat4.translate(modelViewMatrix, // destination matrix
modelViewMatrix, // matrix to translate
[-0.0, 0.0, -6]); // amount to translate
// Tell WebGL how to pull out the positions from the position
// buffer into the vertexPosition attribute.
{
const numComponents = 2;
const type = gl.FLOAT;
const normalize = false;
const stride = 0;
const offset = 0;
gl.bindBuffer(gl.ARRAY_BUFFER, buffers.position);
gl.vertexAttribPointer(
programInfo.attribLocations.vertexPosition,
numComponents,
type,
normalize,
stride,
offset);
gl.enableVertexAttribArray(
programInfo.attribLocations.vertexPosition);
}
// Tell WebGL to use our program when drawing
gl.useProgram(programInfo.program);
// Set the shader uniforms
gl.uniformMatrix4fv(
programInfo.uniformLocations.projectionMatrix,
false,
projectionMatrix);
gl.uniformMatrix4fv(
programInfo.uniformLocations.modelViewMatrix,
false,
modelViewMatrix);
gl.uniform3f(programInfo.uniformLocations.resolution, canvas.width, canvas.height, 1.0);
{
const offset = 0;
const vertexCount = 4;
gl.drawArrays(gl.TRIANGLE_STRIP, offset, vertexCount);
}
}
//
// Initialize a shader program, so WebGL knows how to draw our data
//
function initShaderProgram(gl, vsSource, fsSource) {
const vertexShader = loadShader(gl, gl.VERTEX_SHADER, vsSource);
const fragmentShader = loadShader(gl, gl.FRAGMENT_SHADER, fsSource);
// Create the shader program
const shaderProgram = gl.createProgram();
gl.attachShader(shaderProgram, vertexShader);
gl.attachShader(shaderProgram, fragmentShader);
gl.linkProgram(shaderProgram);
// If creating the shader program failed, alert
if (!gl.getProgramParameter(shaderProgram, gl.LINK_STATUS)) {
alert('Unable to initialize the shader program: ' + gl.getProgramInfoLog(shaderProgram));
return null;
}
return shaderProgram;
}
//
// creates a shader of the given type, uploads the source and
// compiles it.
//
function loadShader(gl, type, source) {
const shader = gl.createShader(type);
// Send the source to the shader object
gl.shaderSource(shader, source);
// Compile the shader program
gl.compileShader(shader);
// See if it compiled successfully
if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {
alert('An error occurred compiling the shaders: ' + gl.getShaderInfoLog(shader));
gl.deleteShader(shader);
return null;
}
return shader;
}
canvas {
border: 2px solid black;
background-color: black;
}
video {
display: none;
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/gl-matrix/2.8.1/gl-matrix-min.js"></script>
<body>
<canvas id="glcanvas" width="640" height="480"></canvas>
</body>
故障相同: