我在pytorch中分裂得不好

I do not split well in pytorch

我想在 pytorch 中进行张量拆分。但是,我收到一条错误消息,因为我无法进行拆分。
我想要的行为是将输入数据拆分为两个完全连接的层。然后我想创建一个模型,将两个全连接层合二为一。 我认为错误是由于 x1, x2 = torch.tensor_split(x,2)

中的错误代码造成的
import torch
from torch import nn, optim
import numpy as np
from matplotlib import pyplot as plt

class Regression(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear1 = nn.Linear(1, 32)
        self.linear2 = nn.Linear(32, 16)
        self.linear3 = nn.Linear(16*2, 1)

    def forward(self, x):
        x1, x2 = torch.tensor_split(x,2)
        x1 = nn.functional.relu(self.linear1(x1))
        x1 = nn.functional.relu(self.linear2(x1))

        x2 = nn.functional.relu(self.linear1(x2))
        x2 = nn.functional.relu(self.linear2(x2))
        cat_x = torch.cat([x1, x2], dim=1)

        cat_x = self.linear3(cat_x)
        return cat_x

def train(model, optimizer, E, iteration, x, y):
    losses = []
    for i in range(iteration):
        optimizer.zero_grad()                   # 勾配情報を0に初期化
        y_pred = model(x)                       # 予測
        loss = E(y_pred.reshape(y.shape), y)    # 損失を計算(shapeを揃える)
        loss.backward()                         # 勾配の計算
        optimizer.step()                        # 勾配の更新
        losses.append(loss.item())              # 損失値の蓄積
        print('epoch=', i+1, 'loss=', loss)
    return model, losses

x = np.random.uniform(0, 10, 100)                                   # x軸をランダムで作成
y = np.random.uniform(0.9, 1.1, 100) * np.sin(2 * np.pi * 0.1 * x)  # 正弦波を作成
x = torch.from_numpy(x.astype(np.float32)).float()                  # xをテンソルに変換
y = torch.from_numpy(y.astype(np.float32)).float()                  # yをテンソルに変換
X = torch.stack([torch.ones(100), x], 1)   

net = Regression()

optimizer = optim.RMSprop(net.parameters(), lr=0.01)                # 最適化にRMSpropを設定
E = nn.MSELoss()                                                    # 損失関数にMSEを設定

net, losses = train(model=net, optimizer=optimizer, E=E, iteration=5000, x=X, y=y)

错误信息

/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py in linear(input, weight, bias)
   1846     if has_torch_function_variadic(input, weight, bias):
   1847         return handle_torch_function(linear, (input, weight, bias), input, weight, bias=bias)
-> 1848     return torch._C._nn.linear(input, weight, bias)
   1849 
   1850 

RuntimeError: mat1 and mat2 shapes cannot be multiplied (50x2 and 1x32)

Tl;博士

torch.tensor_split(x,2)中指定dim=1

说明

x来自两个形状为[100,1]的张量堆叠在dim 1处,所以它的形状是[100, 2]。应用 tensor_split 后,您将得到两个形状均为 [50, 2].

的张量
print(x.shape) # torch.Size([100, 2])
print(torch.tensor_split(X,2)[0].shape) # torch.Size([50, 2])

错误发生是因为linear1只接受形状为[BATCH_SIZE,1]的张量作为输入,但传入了形状为[50, 2]的张量。

如果您打算拆分随机数数组和全一数组,请将 torch.tensor_split(x,2) 更改为 torch.tensor_split(x,2,dim=1),这会产生两个形状为 [100,1] 的张量。