Scala schema_of_json 函数在 spark 结构化流中失败

Scala schema_of_json function fails in spark structured streaming

我创建了一个函数来读取 JSON 作为具有其模式的字符串。然后在火花流中使用该功能。这样做时出现错误。当我首先创建模式,然后使用该模式读取时,同一块工作,但在单行中不起作用。我该如何解决?

def processBatch(microBatchOutputDF: DataFrame, batchId: Long) {
  
  TOPICS.split(',').foreach(topic =>{
    var TableName = topic.split('.').last.toUpperCase
    var df = microBatchOutputDF
    
    /*var schema = schema_of_json(df
                                .select($"value")
                                .filter($"topic".contains(topic))
                                .as[String]
                               )*/
    
    var jsonDataDf = df.filter($"topic".contains(topic))
                      .withColumn("jsonData", from_json($"value", schema_of_json(lit($"value".as[String])), scala.collection.immutable.Map[String, String]().asJava))

    var srcTable = jsonDataDf
                    .select(col(s"jsonData.payload.after.*"), $"offset", $"timestamp")

    srcTable
      .select(srcTable.columns.map(c => col(c).cast(StringType)) : _*)
      .write
      .mode("append").format("delta").save("/mnt/datalake/raw/kafka/" + TableName)
    
    spark.sql(s"""CREATE TABLE IF NOT EXISTS kafka_raw.$TableName USING delta LOCATION '/mnt/datalake/raw/kafka/$TableName'""")
  } )
}

Spark 流代码

import org.apache.spark.sql.streaming.Trigger

val StreamingQuery = InputDf
                        .select("*")
                        .writeStream.outputMode("update")
                        .option("queryName", "StreamingQuery")
                        .foreachBatch(processBatch _)
                        .start()

错误: org.apache.spark.sql.AnalysisException:模式应以 DDL 格式指定为字符串文字或 schema_of_json/schema_of_csv 函数的输出,而不是 schema_of_json(value)

Error –org.apache.spark.sql.AnalysisException: Schema should be specified in DDL format as a string literal or output of the schema_of_json/schema_of_csv functions instead of schema_of_json(value)

以上错误表明 from_json() 函数存在问题。

语法:- from_json(jsonStr, schema[, options]) - Returns 具有给定 jsonStrschema.

的结构值

参考以下示例:

> SELECT from_json('{"a":1, "b":0.8}', 'a INT, b DOUBLE');
 {"a":1,"b":0.8}
> SELECT from_json('{"time":"26/08/2015"}', 'time Timestamp', map('timestampFormat', 'dd/MM/yyyy'));
 {"time":2015-08-26 00:00:00}

参考 - https://docs.databricks.com/sql/language-manual/functions/from_json.html

我就是这样解决的。 我从 kafka 输出数据帧创建了一个过滤数据帧,并像以前一样应用了其中的所有逻辑。读取时生成模式的问题是,from_json 不知道要使用数据帧所有行中的确切行。

def processBatch(microBatchOutputDF: DataFrame, batchId: Long) {
  
  TOPICS.split(',').foreach(topic =>{
    var TableName = topic.split('.').last.toUpperCase
    var df = microBatchOutputDF.where(col("topic") === topic)
    
    var schema = schema_of_json(df
                                .select($"value")
                                .filter($"topic".contains(topic))
                                .as[String]
                               )
    
    var jsonDataDf = df.withColumn("jsonData", from_json($"value", schema, scala.collection.immutable.Map[String, String]().asJava))

    var srcTable = jsonDataDf
                    .select(col(s"jsonData.payload.after.*"), $"offset", $"timestamp")

    srcTable
      .select(srcTable.columns.map(c => col(c).cast(StringType)) : _*)
      .write
      .mode("append").format("delta").save("/mnt/datalake/raw/kafka/" + TableName)
    
    spark.sql(s"""CREATE TABLE IF NOT EXISTS kafka_raw.$TableName USING delta LOCATION '/mnt/datalake/raw/kafka/$TableName'""")
  } )
}