如何覆盖一个方法并选择调用哪个方法
How to override a method and chose which one to call
我正在尝试从头开始实施神经网络。默认情况下,它按我的预期工作,但是,现在我正在尝试将 L2 正则化添加到我的模型中。为此,我需要更改三个方法-
cost() #计算成本,
cost_derivative ,
backward_prop # 向后传播网络
你可以在下面看到,我有 L2_regularization = None
作为 init 函数的输入
def __init__(self,sizes, activations = None , cost_function = 'binary_cross_entropy' ,param_init_type = None, L2_regularization=None,dropout = None):
self.sizes = sizes
self.num_layers = len(sizes)
self.caches = dict()
self.cost_function = cost_function
if activations == None: self.layer_activations = self.default_layer_activations_init(sizes)
else: self.layer_activations = activations
if param_init_type == None: self.param_init_type = 'default'
else: self.param_init_type = param_init_type
self.parameters_initializer()
所以,如果 L2_regularization 是 True,我需要对上述方法稍作改动。
我可以复制所有三个函数并更改它们,在训练时询问:
if self.regularization: cost = self.cost_reg(input) # as if i'm overriding the cost function
以及其他
不过,
这种方式有两个问题
我不认为这种方式是真正的 pythonic 方式。所以,复制一个方法,稍作改动,给它起另一个名字,就不太好看了。
我不想在每次迭代中检查是 self.regularization is True
还是 self.regularization is None
:。
我认为它可能会减慢模型的速度,并且有更好的方法。如果我错了,请告诉我这个问题。
我想从模型中得到的是事先了解正则化。
比如我有self.regualrization==True
当我在 train 函数中调用 backprop 方法时,它 returns 使用正则表达式进行反向传播
代码。
如果您阅读整个代码并建议我按照我的意愿做事,那就太复杂了。因此,我实际上用相同的场景编写了更简单的代码
class Network():
def __init__(self,sizes, regularization = None):
self.sizes = sizes
self.expression = 5
self.regularization = regularization
def compute_cost(self):
count = 0
for i in self.sizes:
count+=i
return count
def compute_cost_regularized(self):
count = 0
for i in self.sizes:
count+=i
#as if self.expression is value of regularization expression
count = count + self.expression
return count
def cost_value(self):
if self.regularization:
return self.compute_cost_regularized()
else:
return self.compute_cost()
net_default = Network([3,3,4])
net_regularized= Network([3,3,4],regularization=True)
print('This is the answer from net_default ',net_default.cost_value())
print('This is the answer from net_regularized ',net_regularized.cost_value())
输出是:
这是来自 net_default 10 的回答
这是来自 net_regularized 15
的回答
它没有解决我的 none 个问题。
一个方法我写了 2 次,换了 1 行,我在计算时使用了 if 语句。
不这样做我怎么能写呢。我是否需要避免在每次迭代中使用 if 语句
我也试过覆盖方法
class Network():
def __init__(self,sizes, regularization = None):
self.sizes = sizes
self.expression = 5
self.regularization = regularization
def compute_cost(self):
count = 0
for i in self.sizes:
count+=i
return count
def cost_value(self):
if self.regularization:
return regularized(self).compute_cost()
else:
return self.compute_cost()
class regularized(Network):
def __init__(self, sizes, regularization=None):
super().__init__(sizes, regularization)
def compute_cost(self):
return super().compute_cost() + self.expression
net_default = Network([3,3,4])
net_regularized= Network([3,3,4],regularization=True)
print('This is the answer from net_default ',net_default.cost_value())
print('This is the answer from net_regularized ',net_regularized.cost_value())
但是,我得到一个错误 TypeError : 'Network' object is not iterable
这里是实际的train()和cost()函数,如果你有实现正则化的修改想法
def cost(self,X,Y):
#TODO L2 reg ll change cost function
"""param X : Input that will be given to network , Function itself does forward propagation steps and compute cost
param Y : Wanted output corresponds to given input data. Cost will be computed by This Y and Y_hat which is output of NN for X input"""
Y_hat = self.feed_forward(X)
m = Y.shape[1]
if self.cost_function == 'binary_cross_entropy':
cost = (-1/m)*np.sum( np.multiply(Y,np.log(Y_hat)) + np.multiply( (1-Y) , np.log(1-Y_hat) )) ; cost = np.squeeze(cost)
return cost
elif self.cost_function == 'mse':
cost = (1/m)*np.sum(np.square(Y-Y_hat)) ; cost = np.squeeze(cost)
return cost
else:
raise Exception('No such cost function yet')
def train(self,X,Y,lr = 0.0001,epoch=1000 , X_test = None , Y_test = None , regularization = None , dropout = False):
assert (X.shape[1] == Y.shape[1]) , "Unmatched In out batch size"
self.caches['A0'] = X
for iter in range(epoch):
A_l = self.feed_forward(X)
dA_l = self.cost_derivative(A_l,Y)
for layer_num in reversed(range(1,self.num_layers)):
grad_w,grad_b,dA_l = self.backward_prop(dA_l,layer_num)
self.update_param(grad_w,grad_b,layer_num, lr = lr)
if iter% (epoch/10) ==0:
print('\n COST:::',self.cost(X,Y),end=' ')
self.score(X,Y)
if X_test is not None:
self.score(X_test,Y_test)
#Saving parameters dictionary to file
a_file = open("parameters.pkl", "wb")
pickle.dump(self.parameters, a_file)
a_file.close()
如果您有兴趣,我已经在此处上传了完整的代码。
https://github.com/IlkinKarimli0/Neural-Network-from-scratch/blob/main/NeuralNetwork.py
一般
总的来说,您不应该为了覆盖单个方法而在对象内部创建对象,相反您可以这样做
class Network():
def __init__(self, sizes):
self.sizes = sizes
self.expression = 5
def compute_cost(self):
count = 0
for i in self.sizes:
count+=i
return count
def cost_value(self):
return self.compute_cost()
class RegularizedNetwork(Network):
def __init__(self, sizes):
super().__init__(sizes)
def compute_cost(self):
return super().compute_cost() + self.expression
net_default = Network([3,3,4])
net_regularized= RegularizedNetwork([3,3,4])
print('This is the answer from net_default ',net_default.cost_value())
print('This is the answer from net_regularized ',net_regularized.cost_value())
换句话说,您实际上创建了子 class 的实例,它覆盖了特定函数(此处:compute_cost),并继承了所有剩余的函数。现在当调用 cost_value() 时,它会调用相应的 compute_cost。事实上你也不需要compute_cost。
class Network():
def __init__(self, sizes):
self.sizes = sizes
self.expression = 5
def cost_value(self):
count = 0
for i in self.sizes:
count+=i
return count
class RegularizedNetwork(Network):
def __init__(self, sizes):
super().__init__(sizes)
def cost_value(self):
return super().cost_value() + self.expression
net_default = Network([3,3,4])
net_regularized= RegularizedNetwork([3,3,4])
print('This is the answer from net_default ',net_default.cost_value())
print('This is the answer from net_regularized ',net_regularized.cost_value())
代码问题
如果出于某种原因您想继续使用自己的代码,问题就在这里
def cost_value(self):
if self.regularization:
return regularized(self).compute_cost()
else:
return self.compute_cost()
您正在将对“self”的引用传递给期望 sizes
的 regularized
的构造函数,它应该是
def cost_value(self):
if self.regularization:
return regularized(self.sizes).compute_cost()
else:
return self.compute_cost()
我正在尝试从头开始实施神经网络。默认情况下,它按我的预期工作,但是,现在我正在尝试将 L2 正则化添加到我的模型中。为此,我需要更改三个方法-
cost() #计算成本, cost_derivative , backward_prop # 向后传播网络
你可以在下面看到,我有 L2_regularization = None
作为 init 函数的输入
def __init__(self,sizes, activations = None , cost_function = 'binary_cross_entropy' ,param_init_type = None, L2_regularization=None,dropout = None):
self.sizes = sizes
self.num_layers = len(sizes)
self.caches = dict()
self.cost_function = cost_function
if activations == None: self.layer_activations = self.default_layer_activations_init(sizes)
else: self.layer_activations = activations
if param_init_type == None: self.param_init_type = 'default'
else: self.param_init_type = param_init_type
self.parameters_initializer()
所以,如果 L2_regularization 是 True,我需要对上述方法稍作改动。
我可以复制所有三个函数并更改它们,在训练时询问:
if self.regularization: cost = self.cost_reg(input) # as if i'm overriding the cost function
以及其他
不过,
这种方式有两个问题
我不认为这种方式是真正的 pythonic 方式。所以,复制一个方法,稍作改动,给它起另一个名字,就不太好看了。
我不想在每次迭代中检查是
self.regularization is True
还是self.regularization is None
:。 我认为它可能会减慢模型的速度,并且有更好的方法。如果我错了,请告诉我这个问题。
我想从模型中得到的是事先了解正则化。
比如我有self.regualrization==True
当我在 train 函数中调用 backprop 方法时,它 returns 使用正则表达式进行反向传播
代码。
如果您阅读整个代码并建议我按照我的意愿做事,那就太复杂了。因此,我实际上用相同的场景编写了更简单的代码
class Network():
def __init__(self,sizes, regularization = None):
self.sizes = sizes
self.expression = 5
self.regularization = regularization
def compute_cost(self):
count = 0
for i in self.sizes:
count+=i
return count
def compute_cost_regularized(self):
count = 0
for i in self.sizes:
count+=i
#as if self.expression is value of regularization expression
count = count + self.expression
return count
def cost_value(self):
if self.regularization:
return self.compute_cost_regularized()
else:
return self.compute_cost()
net_default = Network([3,3,4])
net_regularized= Network([3,3,4],regularization=True)
print('This is the answer from net_default ',net_default.cost_value())
print('This is the answer from net_regularized ',net_regularized.cost_value())
输出是: 这是来自 net_default 10 的回答 这是来自 net_regularized 15
的回答它没有解决我的 none 个问题。
一个方法我写了 2 次,换了 1 行,我在计算时使用了 if 语句。
不这样做我怎么能写呢。我是否需要避免在每次迭代中使用 if 语句
我也试过覆盖方法
class Network():
def __init__(self,sizes, regularization = None):
self.sizes = sizes
self.expression = 5
self.regularization = regularization
def compute_cost(self):
count = 0
for i in self.sizes:
count+=i
return count
def cost_value(self):
if self.regularization:
return regularized(self).compute_cost()
else:
return self.compute_cost()
class regularized(Network):
def __init__(self, sizes, regularization=None):
super().__init__(sizes, regularization)
def compute_cost(self):
return super().compute_cost() + self.expression
net_default = Network([3,3,4])
net_regularized= Network([3,3,4],regularization=True)
print('This is the answer from net_default ',net_default.cost_value())
print('This is the answer from net_regularized ',net_regularized.cost_value())
但是,我得到一个错误 TypeError : 'Network' object is not iterable
这里是实际的train()和cost()函数,如果你有实现正则化的修改想法
def cost(self,X,Y):
#TODO L2 reg ll change cost function
"""param X : Input that will be given to network , Function itself does forward propagation steps and compute cost
param Y : Wanted output corresponds to given input data. Cost will be computed by This Y and Y_hat which is output of NN for X input"""
Y_hat = self.feed_forward(X)
m = Y.shape[1]
if self.cost_function == 'binary_cross_entropy':
cost = (-1/m)*np.sum( np.multiply(Y,np.log(Y_hat)) + np.multiply( (1-Y) , np.log(1-Y_hat) )) ; cost = np.squeeze(cost)
return cost
elif self.cost_function == 'mse':
cost = (1/m)*np.sum(np.square(Y-Y_hat)) ; cost = np.squeeze(cost)
return cost
else:
raise Exception('No such cost function yet')
def train(self,X,Y,lr = 0.0001,epoch=1000 , X_test = None , Y_test = None , regularization = None , dropout = False):
assert (X.shape[1] == Y.shape[1]) , "Unmatched In out batch size"
self.caches['A0'] = X
for iter in range(epoch):
A_l = self.feed_forward(X)
dA_l = self.cost_derivative(A_l,Y)
for layer_num in reversed(range(1,self.num_layers)):
grad_w,grad_b,dA_l = self.backward_prop(dA_l,layer_num)
self.update_param(grad_w,grad_b,layer_num, lr = lr)
if iter% (epoch/10) ==0:
print('\n COST:::',self.cost(X,Y),end=' ')
self.score(X,Y)
if X_test is not None:
self.score(X_test,Y_test)
#Saving parameters dictionary to file
a_file = open("parameters.pkl", "wb")
pickle.dump(self.parameters, a_file)
a_file.close()
如果您有兴趣,我已经在此处上传了完整的代码。
https://github.com/IlkinKarimli0/Neural-Network-from-scratch/blob/main/NeuralNetwork.py
一般
总的来说,您不应该为了覆盖单个方法而在对象内部创建对象,相反您可以这样做
class Network():
def __init__(self, sizes):
self.sizes = sizes
self.expression = 5
def compute_cost(self):
count = 0
for i in self.sizes:
count+=i
return count
def cost_value(self):
return self.compute_cost()
class RegularizedNetwork(Network):
def __init__(self, sizes):
super().__init__(sizes)
def compute_cost(self):
return super().compute_cost() + self.expression
net_default = Network([3,3,4])
net_regularized= RegularizedNetwork([3,3,4])
print('This is the answer from net_default ',net_default.cost_value())
print('This is the answer from net_regularized ',net_regularized.cost_value())
换句话说,您实际上创建了子 class 的实例,它覆盖了特定函数(此处:compute_cost),并继承了所有剩余的函数。现在当调用 cost_value() 时,它会调用相应的 compute_cost。事实上你也不需要compute_cost。
class Network():
def __init__(self, sizes):
self.sizes = sizes
self.expression = 5
def cost_value(self):
count = 0
for i in self.sizes:
count+=i
return count
class RegularizedNetwork(Network):
def __init__(self, sizes):
super().__init__(sizes)
def cost_value(self):
return super().cost_value() + self.expression
net_default = Network([3,3,4])
net_regularized= RegularizedNetwork([3,3,4])
print('This is the answer from net_default ',net_default.cost_value())
print('This is the answer from net_regularized ',net_regularized.cost_value())
代码问题
如果出于某种原因您想继续使用自己的代码,问题就在这里
def cost_value(self):
if self.regularization:
return regularized(self).compute_cost()
else:
return self.compute_cost()
您正在将对“self”的引用传递给期望 sizes
的 regularized
的构造函数,它应该是
def cost_value(self):
if self.regularization:
return regularized(self.sizes).compute_cost()
else:
return self.compute_cost()