无法正确停止线程池
Cannot correctly stop thread pool
这是我的 ThreadPool
实现。我已经在简单函数 main
中尝试过它,但无法正确停止它,在线程启动之前调用析构函数并且整个程序在死锁中完成(在 t.join()
上),因为在线程到达之前调用了条件变量 wait
函数。
有什么解决办法吗?或者有更好的实现方式?
ThreadPool.cpp
#include <condition_variable>
#include <future>
#include <iostream>
#include <mutex>
#include <thread>
#include <vector>
namespace Concurrency {
template <typename RetType>
class StandardThreadPool : public ThreadPool<RetType> {
private:
typedef std::function<RetType()> taskType;
ThreadSafeQueue<std::packaged_task<RetType()>> queue;
std::mutex queueMutex;
std::condition_variable queueCondition;
std::vector<std::thread> poolThreads;
std::atomic<bool> stopThreadsFlag{false};
void threadWork() {
std::cout << "thread:" << std::this_thread::get_id() << " started\n";
std::unique_lock<std::mutex> lock(queueMutex);
while (true) {
queueCondition.wait(lock);
if (stopThreadsFlag.load())
break;
auto task = queue.Pop();
if (task)
(*task)();
}
std::cout << "thread:" << std::this_thread::get_id() << " finished\n";
}
void initThreadPool() {
poolThreads.resize(StandardThreadPool<RetType>::maxThreads);
}
void startThreads() {
for (int i = 0; i < StandardThreadPool<RetType>::maxThreads; i++) {
poolThreads[i] =
std::thread(&StandardThreadPool<RetType>::threadWork, this);
}
}
void terminateThreads() {
stopThreadsFlag.store(true);
queueCondition.notify_all();
for (auto &t : poolThreads) {
t.join();
}
}
public:
StandardThreadPool(int maxThreads) : ThreadPool<RetType>(maxThreads) {
initThreadPool();
startThreads();
}
std::future<RetType> virtual Push(taskType &&task) override {
std::packaged_task<RetType()> pt = std::packaged_task<RetType()>(task);
auto future = pt.get_future();
queue.Push(std::move(pt));
queueCondition.notify_one();
return future;
}
~StandardThreadPool<RetType>() {
std::cout << "destructor called\n";
terminateThreads(); }
};
} // namespace Concurrency
namespace Concurrency {
template <typename T> class ThreadSafeQueue {
private:
struct node {
std::shared_ptr<T> data;
std::unique_ptr<node> next;
};
std::mutex headMutex;
std::mutex tailMutex;
std::unique_ptr<node> head;
node *tail;
node *getTail() {
std::lock_guard<std::mutex> lock(tailMutex);
return tail;
}
std::unique_ptr<node> popHead() {
std::lock_guard<std::mutex> lock(headMutex);
if (head.get() == getTail())
return nullptr;
std::unique_ptr<node> oldHead(std::move(head));
head = std::move(oldHead->next);
return oldHead;
}
public:
ThreadSafeQueue() : head(new node), tail(head.get()) {}
std::shared_ptr<T> Pop() {
auto oldHead = popHead();
return oldHead ? oldHead->data : nullptr;
}
void Push(T &newValue) {
auto newData = std::make_shared<T>(std::forward<T>(newValue));
std::unique_ptr<node> pNew(new node);
auto newTail = pNew.get();
std::lock_guard<std::mutex> lock(tailMutex);
tail->data = newData;
tail->next = std::move(pNew);
tail = newTail;
}
void Push(T &&newValue) {
auto newData = std::make_shared<T>(std::move(newValue));
std::unique_ptr<node> pNew(new node);
auto newTail = pNew.get();
std::lock_guard<std::mutex> lock(tailMutex);
tail->data = newData;
tail->next = std::move(pNew);
tail = newTail;
}
ThreadSafeQueue(const ThreadSafeQueue &) = delete;
ThreadSafeQueue &operator=(const ThreadSafeQueue &) = delete;
};
} // namespace Concurrency
#include <functional>
#include <future>
namespace Concurrency {
template <typename RetType> class ThreadPool {
public:
int maxThreads;
public:
typedef std::function<RetType()> taskType;
ThreadPool(int maxThreads):maxThreads(maxThreads){}
virtual std::future<RetType> Push(taskType &&newTask) = 0;
ThreadPool(const ThreadPool &) = delete;
ThreadPool(const ThreadPool &&) = delete;
};
} // namespace Concurrency
main.cpp
int main() {
Concurrency::StandardThreadPool<int> th(1);
auto fun = []() {
std::cout << "function running\n";
return 2;
};
th.Push(fun);
return EXIT_SUCCESS;
}
首先,一个正确的线程安全队列。
template<class T>
struct threadsafe_queue {
[[nodiscard]] std::optional<T> pop() {
auto l = lock();
cv.wait(l, [&]{ return is_aborted() || !data.empty(); });
if (is_aborted())
return {};
auto r = std::move(data.front());
data.pop_front();
cv.notify_all(); // for wait_until_empty
return r; // might need std::move here, depending on compiler version
}
bool push(T t) {
auto l = lock();
if (is_aborted()) return false;
data.push_back(std::move(t));
cv.notify_one();
return true;
}
void set_abort_flag() {
auto l = lock(); // still need this
aborted = true;
data.clear();
cv.notify_all();
}
[[nodiscard]] bool is_aborted() const { return aborted; }
void wait_until_empty() {
auto l = lock();
cv.wait(l, [&]{ return data.empty(); });
}
private:
std::unique_lock<std::mutex> lock() {
return std::unique_lock<std::mutex>(m);
}
std::condition_variable cv;
std::mutex m;
std::atomic<bool> aborted{false};
std::deque<T> data;
};
这在内部处理中止等。
然后我们的线程池变成:
struct threadpool {
explicit threadpool(std::size_t count)
{
for (std::size_t i = 0; i < count; ++i) {
threads.emplace_back([&]{
// abort handled by empty pop:
while( auto f = queue.pop() ) {
(*f)();
}
});
}
}
void set_abort_flag() {
queue.set_abort_flag();
}
[[nodiscard]] bool is_aborted() const {
return queue.is_aborted();
}
~threadpool() {
queue.wait_until_empty();
queue.set_abort_flag(); // get threads to leave the queue
for (std::thread& t:threads)
t.join();
}
template<class F,
class R=typename std::result_of<F()>::type
>
std::future<R> push_task( F f ) {
std::packaged_task<R()> task( std::move(f) );
auto ret = task.get_future();
if (queue.push( std::packaged_task<void()>(std::move(task)) )) // wait, this works? Yes it does.
return ret;
else
return {}; // cannot push, already aborted
}
private:
// yes, void. This is evil but it works
threadsafe_queue<std::packaged_task<void()>> queue;
std::vector<std::thread> threads;
};
在 c++11 中,您可以将 std::optional
换成 std::unique_ptr
。更多的运行时开销。
这里的技巧是 std::packaged_task<void()>
可以存储 std::packaged_task<R()>
。我们不需要队列中的 return 值。因此,一个线程池可以处理任务中任意数量的不同 return 值——它并不关心。
我只在 thread_pool
销毁时加入线程。我也可以在中止后执行此操作。
销毁 thread_pool
等待所有任务完成。请注意,中止 thread_pool 可能不会中止正在进行的任务。您可能想要添加的一件事是将中止 API/flag 传递给任务的选项,因此如果被要求它们可以提前中止。
获得这种工业规模很难,因为理想情况下,任务中的所有阻塞也会注意中止的可能性。
您可以添加第二个 cv
以在弹出后通知,只有 wait_until_empty
等待。这可能会让你避免一些虚假的唤醒。
这是我的 ThreadPool
实现。我已经在简单函数 main
中尝试过它,但无法正确停止它,在线程启动之前调用析构函数并且整个程序在死锁中完成(在 t.join()
上),因为在线程到达之前调用了条件变量 wait
函数。
有什么解决办法吗?或者有更好的实现方式?
ThreadPool.cpp
#include <condition_variable>
#include <future>
#include <iostream>
#include <mutex>
#include <thread>
#include <vector>
namespace Concurrency {
template <typename RetType>
class StandardThreadPool : public ThreadPool<RetType> {
private:
typedef std::function<RetType()> taskType;
ThreadSafeQueue<std::packaged_task<RetType()>> queue;
std::mutex queueMutex;
std::condition_variable queueCondition;
std::vector<std::thread> poolThreads;
std::atomic<bool> stopThreadsFlag{false};
void threadWork() {
std::cout << "thread:" << std::this_thread::get_id() << " started\n";
std::unique_lock<std::mutex> lock(queueMutex);
while (true) {
queueCondition.wait(lock);
if (stopThreadsFlag.load())
break;
auto task = queue.Pop();
if (task)
(*task)();
}
std::cout << "thread:" << std::this_thread::get_id() << " finished\n";
}
void initThreadPool() {
poolThreads.resize(StandardThreadPool<RetType>::maxThreads);
}
void startThreads() {
for (int i = 0; i < StandardThreadPool<RetType>::maxThreads; i++) {
poolThreads[i] =
std::thread(&StandardThreadPool<RetType>::threadWork, this);
}
}
void terminateThreads() {
stopThreadsFlag.store(true);
queueCondition.notify_all();
for (auto &t : poolThreads) {
t.join();
}
}
public:
StandardThreadPool(int maxThreads) : ThreadPool<RetType>(maxThreads) {
initThreadPool();
startThreads();
}
std::future<RetType> virtual Push(taskType &&task) override {
std::packaged_task<RetType()> pt = std::packaged_task<RetType()>(task);
auto future = pt.get_future();
queue.Push(std::move(pt));
queueCondition.notify_one();
return future;
}
~StandardThreadPool<RetType>() {
std::cout << "destructor called\n";
terminateThreads(); }
};
} // namespace Concurrency
namespace Concurrency {
template <typename T> class ThreadSafeQueue {
private:
struct node {
std::shared_ptr<T> data;
std::unique_ptr<node> next;
};
std::mutex headMutex;
std::mutex tailMutex;
std::unique_ptr<node> head;
node *tail;
node *getTail() {
std::lock_guard<std::mutex> lock(tailMutex);
return tail;
}
std::unique_ptr<node> popHead() {
std::lock_guard<std::mutex> lock(headMutex);
if (head.get() == getTail())
return nullptr;
std::unique_ptr<node> oldHead(std::move(head));
head = std::move(oldHead->next);
return oldHead;
}
public:
ThreadSafeQueue() : head(new node), tail(head.get()) {}
std::shared_ptr<T> Pop() {
auto oldHead = popHead();
return oldHead ? oldHead->data : nullptr;
}
void Push(T &newValue) {
auto newData = std::make_shared<T>(std::forward<T>(newValue));
std::unique_ptr<node> pNew(new node);
auto newTail = pNew.get();
std::lock_guard<std::mutex> lock(tailMutex);
tail->data = newData;
tail->next = std::move(pNew);
tail = newTail;
}
void Push(T &&newValue) {
auto newData = std::make_shared<T>(std::move(newValue));
std::unique_ptr<node> pNew(new node);
auto newTail = pNew.get();
std::lock_guard<std::mutex> lock(tailMutex);
tail->data = newData;
tail->next = std::move(pNew);
tail = newTail;
}
ThreadSafeQueue(const ThreadSafeQueue &) = delete;
ThreadSafeQueue &operator=(const ThreadSafeQueue &) = delete;
};
} // namespace Concurrency
#include <functional>
#include <future>
namespace Concurrency {
template <typename RetType> class ThreadPool {
public:
int maxThreads;
public:
typedef std::function<RetType()> taskType;
ThreadPool(int maxThreads):maxThreads(maxThreads){}
virtual std::future<RetType> Push(taskType &&newTask) = 0;
ThreadPool(const ThreadPool &) = delete;
ThreadPool(const ThreadPool &&) = delete;
};
} // namespace Concurrency
main.cpp
int main() {
Concurrency::StandardThreadPool<int> th(1);
auto fun = []() {
std::cout << "function running\n";
return 2;
};
th.Push(fun);
return EXIT_SUCCESS;
}
首先,一个正确的线程安全队列。
template<class T>
struct threadsafe_queue {
[[nodiscard]] std::optional<T> pop() {
auto l = lock();
cv.wait(l, [&]{ return is_aborted() || !data.empty(); });
if (is_aborted())
return {};
auto r = std::move(data.front());
data.pop_front();
cv.notify_all(); // for wait_until_empty
return r; // might need std::move here, depending on compiler version
}
bool push(T t) {
auto l = lock();
if (is_aborted()) return false;
data.push_back(std::move(t));
cv.notify_one();
return true;
}
void set_abort_flag() {
auto l = lock(); // still need this
aborted = true;
data.clear();
cv.notify_all();
}
[[nodiscard]] bool is_aborted() const { return aborted; }
void wait_until_empty() {
auto l = lock();
cv.wait(l, [&]{ return data.empty(); });
}
private:
std::unique_lock<std::mutex> lock() {
return std::unique_lock<std::mutex>(m);
}
std::condition_variable cv;
std::mutex m;
std::atomic<bool> aborted{false};
std::deque<T> data;
};
这在内部处理中止等。
然后我们的线程池变成:
struct threadpool {
explicit threadpool(std::size_t count)
{
for (std::size_t i = 0; i < count; ++i) {
threads.emplace_back([&]{
// abort handled by empty pop:
while( auto f = queue.pop() ) {
(*f)();
}
});
}
}
void set_abort_flag() {
queue.set_abort_flag();
}
[[nodiscard]] bool is_aborted() const {
return queue.is_aborted();
}
~threadpool() {
queue.wait_until_empty();
queue.set_abort_flag(); // get threads to leave the queue
for (std::thread& t:threads)
t.join();
}
template<class F,
class R=typename std::result_of<F()>::type
>
std::future<R> push_task( F f ) {
std::packaged_task<R()> task( std::move(f) );
auto ret = task.get_future();
if (queue.push( std::packaged_task<void()>(std::move(task)) )) // wait, this works? Yes it does.
return ret;
else
return {}; // cannot push, already aborted
}
private:
// yes, void. This is evil but it works
threadsafe_queue<std::packaged_task<void()>> queue;
std::vector<std::thread> threads;
};
在 c++11 中,您可以将 std::optional
换成 std::unique_ptr
。更多的运行时开销。
这里的技巧是 std::packaged_task<void()>
可以存储 std::packaged_task<R()>
。我们不需要队列中的 return 值。因此,一个线程池可以处理任务中任意数量的不同 return 值——它并不关心。
我只在 thread_pool
销毁时加入线程。我也可以在中止后执行此操作。
销毁 thread_pool
等待所有任务完成。请注意,中止 thread_pool 可能不会中止正在进行的任务。您可能想要添加的一件事是将中止 API/flag 传递给任务的选项,因此如果被要求它们可以提前中止。
获得这种工业规模很难,因为理想情况下,任务中的所有阻塞也会注意中止的可能性。
您可以添加第二个 cv
以在弹出后通知,只有 wait_until_empty
等待。这可能会让你避免一些虚假的唤醒。