在 R 中使用 data.table 为多行组创建标识符的最快方法是什么?

What is the fastest way of creating an identificator for multi-row groups with data.table in R?

我有一个数据框,它标识一组具有 id 的值:

library(data.table)

dt <- data.table(
  id = rep(c("a", "b", "c"), each = 2),
  value1 = c(1, 1, 1, 2, 1, 1),
  value2 = c(0, 3, 0, 3, 0, 3)
)
dt
#>    id value1 value2
#> 1:  a      1      0
#> 2:  a      1      3
#> 3:  b      1      0
#> 4:  b      2      3
#> 5:  c      1      0
#> 6:  c      1      3

如您所见,ids ac 标识同一组值。所以我想创建一个“模式 id”,它标识与 ids ac 关联的值集(obs:一个 id 可能标识两行以上,我只是将它们限制为两行为了简单起见,在此处列行)。

我确实想出了一个使用嵌套 data.tables 和 match() 的解决方案:

dt <- dt[, .(data = list(.SD)), by = id]

unique_groups <- unique(dt$data)
dt[, pattern_id := match(data, unique_groups)]
dt[, data := NULL]

dt
#>    id pattern_id
#> 1:  a          1
#> 2:  b          2
#> 3:  c          1

可以 解决问题,但速度不如我希望的那样快。 match() 关于列表效率的文档非常清楚:

Matching for lists is potentially very slow and best avoided except in simple cases.

如您所见,我的最终结果中不需要实际的模式数据,只需要 table 将 id 与模式 id 相关联。感觉把数据嵌套起来,用它来匹配,然后再丢弃,有点浪费,但不确定是否有更好的方法。我正在考虑将每个数据帧转换为字符串的方法,或者更好的是,完全避免嵌套的方法,但我想不出比现在更好的方法了。

我创建了一个更大的数据集来尝试和测试不同的解决方案:

set.seed(0)
size <- 1000000
dt <- data.table(
  id = rep(1:(size / 2), each = 2),
  value1 = sample(1:10, size, replace = TRUE),
  value2 = sample(1:10, size, replace = TRUE)
)

重塑更宽的形状并使用 paste0() 怎么样?

library(dplyr)
library(tidyr)

dt <- dt %>% group_by(id) %>%
  mutate(inst = row_number(id)) %>% 
  pivot_wider(values_from = c(value1, value2),
              names_from = inst) %>% 
  mutate(pattern_id = paste0(value1_1, value1_2, value2_1, value2_2))

已更新(删除加入):

这个方法复制了您的方法(即它要求顺序和值都相同)

unique(
  dt[, pattern:=.(paste0(c(value1,value2), collapse=",")), by=id][,.(id,pattern)]
)[,grp:=.GRP, by=pattern][,pattern:=NULL]

       id   grp
   <char> <int>
1:      a     1
2:      b     2
3:      c     1

先前的解决方案:

dt[dt[, .(paste0(sort(c(value1,value2)), collapse=",")), by=id] %>% 
     .[,pattern:=.GRP, by=V1] %>% 
     .[,V1:=NULL], on=.(id)]

输出:

       id value1 value2 pattern
   <char>  <num>  <num>   <int>
1:      a      1      0       1
2:      a      1      3       1
3:      b      1      0       2
4:      b      2      3       2
5:      c      1      0       1
6:      c      1      3       1

使用 toString,如 data.table 将列表用作 by 时的错误消息所建议:

Column or expression 1 of 'by' is type 'list' which is not currently supported.
As a workaround, consider converting the column to a supported type, e.g. by=sapply(list_col, toString)

dt <- dt[, .(data = list(.SD)), by = id]
dt[, pattern_id :=.GRP, by = sapply(data, toString)]
dt[,unlist(data,recursive=F),by=.(id,pattern_id)]

       id pattern_id value1 value2
   <char>      <int>  <num>  <num>
1:      a          1      1      0
2:      a          1      1      3
3:      b          2      1      0
4:      b          2      2      3
5:      c          1      1      0
6:      c          1      1      3

但是,这比 match 慢。

假设每个 id 重复两次,“重塑”- 将 2x2 转换为 1x4 列。然后通过按除 id:

之外的所有列分组,使用 .GRP 获取组 ID
res <- dt[, c(.SD[ 1 ], .SD[ 2 ]), by = id]
setnames(res, make.unique(colnames(res)))
res[, pattern_id := .GRP, by = res[, -1] ][, .(id, pattern_id)]
#             id pattern_id
#      1:      1          1
#      2:      2          2
#      3:      3          3
#      4:      4          4
#      5:      5          5
#    ---                  
# 499996: 499996       1010
# 499997: 499997       3175
# 499998: 499998       3996
# 499999: 499999       3653
# 500000: 500000       4217

使用更大的数据集大约需要半秒。


编辑:使用dcast的另一个版本,但速度慢了8倍:

res <- dcast(dt, id ~ value1 + value2, length)
res[, pattern_id :=.GRP, by = res[, -1] ][, .(id, pattern_id)]

我们可以试试下面的代码

dt[
    ,
    q := toString(unlist(.SD)), id
][
    ,
    pattern_id := .GRP, q
][
    ,
    q := NULL
][]

dt[
    ,
    q := toString(unlist(.SD)),
    id
][
    ,
    pattern_id := as.integer(factor(match(q, q)))
][
    ,
    q := NULL
][]

这给出了

   id value1 value2 pattern_id
1:  a      1      0          1
2:  a      1      3          1
3:  b      1      0          2
4:  b      2      3          2
5:  c      1      0          1
6:  c      1      3          1

这里有一些不依赖于每个 id 的基准,这些 id 必须标识两行,我在下面发布结果。

library(data.table)

set.seed(0)
size <- 500000
dt <- data.table(
  id = rep(1:(size / 2), each = 2),
  value1 = sample(1:10, size, replace = TRUE),
  value2 = sample(1:10, size, replace = TRUE)
)

my_solution <- function(x) {
  x <- x[, .(data = list(.SD)), by = id]

  unique_groups <- unique(x$data)
  x[, pattern_id := match(data, unique_groups)]
  x[, data := NULL]
  x[]
}

langtang_solution <- function(x) {
  x <- x[, .(data = paste0(value1, "|", value2, collapse = ";")), by = id]
  x[, pattern_id := .GRP, by = data]
  x[, data := NULL]
  x[]
}

thomasiscoding_solution <- function(x) {
  x <- x[, .(data = toString(unlist(.SD))), by = id]
  x[, pattern_id := .GRP, by = data]
  x[, data := NULL]
  x[]
}

identical(my_solution(dt), langtang_solution(dt))
#> [1] TRUE
identical(my_solution(dt), thomasiscoding_solution(dt))
#> [1] TRUE

microbenchmark::microbenchmark(
  my_solution(dt),
  langtang_solution(dt),
  thomasiscoding_solution(dt),
  times = 50L
)
#> Unit: seconds
#>                         expr      min       lq     mean   median       uq
#>              my_solution(dt) 3.174106 3.566495 3.818829 3.793850 4.015176
#>        langtang_solution(dt) 1.369860 1.467013 1.596558 1.529327 1.649607
#>  thomasiscoding_solution(dt) 3.014511 3.154224 3.280713 3.256732 3.370015
#>       max neval
#>  4.525275    50
#>  2.279064    50
#>  3.681657    50

这非常丰富。我不知道 .GRP,在我的测试中,它的表现与 match() 非常相似,尽管(非常小)好一点。最好的答案似乎是使用 paste() 将组转换为字符串,然后根据该字符串找到组。