跨列的条件滚动总和
Conditional rolling sum across columns
我有一个跨连续年份(列)的值的数据框,用于唯一个体(行)。此处提供了一个虚拟数据示例:
dt = structure(list(ID = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), `2015` = c(0,
0.8219178, 0, 0.1369863, 0, 1.369863, 0.2739726, 0.8219178, 5,
0), `2016` = c(0, 1.369863, 0, 0.2739726, 0, 0.2739726, 0, 3.2876712,
0, 0), `2017` = c(0.6849315, 0, 0, 0.6849315, 0, 0.5479452, 0,
0, 0, 0), `2018` = c(1.0958904, 0.5479452, 1.9178082, 0, 0, 0,
0, 0, 0, 3), `2019` = c(0, 0, 0, 1.0958904, 0, 0.9589041, 0.5479452,
0, 0, 0), `2020` = c(0.4383562, 0, 0, 0, 0.2739726, 0.6849315,
0, 0, 0, 0)), class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA,
-10L))
我想创建一个数据集,其中每个人每年应该出现的最大值为 1。如果超过这个值,我想将超过 1 的值结转到下一年(列) 并将其与当年每个人的价值相加,依此类推。
预期结果是:
dt_expected = structure(list(ID = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), `2015` = c(0,
0.8219178, 0, 0.1369863, 0, 1, 0.2739726, 0.8219178, 1, 0), `2016` = c(0,
1, 0, 0.2739726, 0, 0.6438356, 0, 1, 1, 0), `2017` = c(0.6849315,
0.369863, 0, 0.6849315, 0, 0.5479452, 0, 1, 1, 0), `2018` = c(1,
0.5479452, 1, 0, 0, 0, 0, 1, 1, 1), `2019` = c(0.0958904, 0,
0.9178082, 1, 0, 0.9589041, 0.5479452, 0.2876712, 1, 1), `2020` = c(0.4383562,
0, 0, 0.0958904, 0.2739726, 0.6849315, 0, 0, 0, 1)), class = c("tbl_df",
"tbl", "data.frame"), row.names = c(NA, -10L))
我完全不知道从哪里开始解决这个问题,因此非常感谢使用 data.table
实现此目的的任何帮助。我唯一的想法是对条件组件使用 lapply
和 ifelse
函数。那么我应该使用 rowSums
还是 Reduce
来实现跨列移动多余值的结果?
不是特别漂亮或高效,但作为起点,我使用 pmin()
和 pmax()
每年(以及随后的一年)迭代更新。当前年份为当前年份和1(pmin(x, 1)
)中的最小值;下一年是当前下一年加上上一年的超出部分(pmax(x - 1, 0)
)
update <- function(df) {
result = df
for (idx in 2:(ncol(df) - 1)) {
x = result[[ idx ]]
result[[ idx ]] = pmin(x, 1)
result[[ idx + 1 ]] = result[[ idx + 1 ]] + pmax(x - 1, 0)
}
result
}
我们有
> all.equal(update(dt), dt_expected)
[1] TRUE
我不知道如何将其转化为有效的 data.table 语法,但是 'works' 函数在 data.table、update(as.data.table(dt))
.[=17 上=]
不确定是否有更有效的内置函数方法,但我只是编写了一个递归函数来实现您描述的行算法,然后将其应用于每一行。
f <- function(l, rest = 0, out = list()) {
if (length(l) == 0) return(unlist(out))
if (l[[1]] + rest <= 1) {
f(l[-1], rest = 0, out = append(out, list(l[[1]] + rest)))
} else (
f(l[-1], rest = l[[1]] + rest - 1, out = append(out, list(1)))
)
}
dt[-1] <- apply(dt[-1], 1, f, simplify = F) |>
do.call(what = rbind)
dt
#> # A tibble: 10 × 7
#> ID `2015` `2016` `2017` `2018` `2019` `2020`
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 0 0 0.685 1 0.0959 0.438
#> 2 2 0.822 1 0.370 0.548 0 0
#> 3 3 0 0 0 1 0.918 0
#> 4 4 0.137 0.274 0.685 0 1 0.0959
#> 5 5 0 0 0 0 0 0.274
#> 6 6 1 0.644 0.548 0 0.959 0.685
#> 7 7 0.274 0 0 0 0.548 0
#> 8 8 0.822 1 1 1 0.288 0
#> 9 9 1 1 1 1 1 0
#> 10 10 0 0 0 1 1 1
由 reprex package (v2.0.1)
于 2022-03-25 创建
Martin Morgan 对 data.table 的回答的翻译:
for (i in 2:(ncol(dt) - 1)) {
x = dt[[i]]
set(dt, j = i, value = pmin(x, 1))
set(dt, j = i + 1, value = dt[[i + 1L]] + pmax(x - 1, 0))
}
这是我的解决方案:
dt |>
pivot_longer(cols = -ID, "year") |>
arrange(ID, year) |>
group_by(ID) |>
mutate(x = {
r <- accumulate(value,
~max(0,.y + .x - 1),
.init = 0)
pmin(1, value + head(r, -1))
}) |>
select(x, year, ID) |>
pivot_wider(names_from = "year", values_from = "x")
##> + # A tibble: 10 × 7
##> # Groups: ID [10]
##> ID `2015` `2016` `2017` `2018` `2019` `2020`
##> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##> 1 1 0 0 0.685 1 0.0959 0.438
##> 2 2 0.822 1 0.370 0.548 0 0
##> 3 3 0 0 0 1 0.918 0
##> 4 4 0.137 0.274 0.685 0 1 0.0959
##> 5 5 0 0 0 0 0 0.274
##> 6 6 1 0.644 0.548 0 0.959 0.685
##> 7 7 0.274 0 0 0 0.548 0
##> 8 8 0.822 1 1 1 0.288 0
##> 9 9 1 1 1 1 1 0
##> 10 10 0 0 0 1 1 1
我有一个跨连续年份(列)的值的数据框,用于唯一个体(行)。此处提供了一个虚拟数据示例:
dt = structure(list(ID = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), `2015` = c(0,
0.8219178, 0, 0.1369863, 0, 1.369863, 0.2739726, 0.8219178, 5,
0), `2016` = c(0, 1.369863, 0, 0.2739726, 0, 0.2739726, 0, 3.2876712,
0, 0), `2017` = c(0.6849315, 0, 0, 0.6849315, 0, 0.5479452, 0,
0, 0, 0), `2018` = c(1.0958904, 0.5479452, 1.9178082, 0, 0, 0,
0, 0, 0, 3), `2019` = c(0, 0, 0, 1.0958904, 0, 0.9589041, 0.5479452,
0, 0, 0), `2020` = c(0.4383562, 0, 0, 0, 0.2739726, 0.6849315,
0, 0, 0, 0)), class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA,
-10L))
我想创建一个数据集,其中每个人每年应该出现的最大值为 1。如果超过这个值,我想将超过 1 的值结转到下一年(列) 并将其与当年每个人的价值相加,依此类推。
预期结果是:
dt_expected = structure(list(ID = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), `2015` = c(0,
0.8219178, 0, 0.1369863, 0, 1, 0.2739726, 0.8219178, 1, 0), `2016` = c(0,
1, 0, 0.2739726, 0, 0.6438356, 0, 1, 1, 0), `2017` = c(0.6849315,
0.369863, 0, 0.6849315, 0, 0.5479452, 0, 1, 1, 0), `2018` = c(1,
0.5479452, 1, 0, 0, 0, 0, 1, 1, 1), `2019` = c(0.0958904, 0,
0.9178082, 1, 0, 0.9589041, 0.5479452, 0.2876712, 1, 1), `2020` = c(0.4383562,
0, 0, 0.0958904, 0.2739726, 0.6849315, 0, 0, 0, 1)), class = c("tbl_df",
"tbl", "data.frame"), row.names = c(NA, -10L))
我完全不知道从哪里开始解决这个问题,因此非常感谢使用 data.table
实现此目的的任何帮助。我唯一的想法是对条件组件使用 lapply
和 ifelse
函数。那么我应该使用 rowSums
还是 Reduce
来实现跨列移动多余值的结果?
不是特别漂亮或高效,但作为起点,我使用 pmin()
和 pmax()
每年(以及随后的一年)迭代更新。当前年份为当前年份和1(pmin(x, 1)
)中的最小值;下一年是当前下一年加上上一年的超出部分(pmax(x - 1, 0)
)
update <- function(df) {
result = df
for (idx in 2:(ncol(df) - 1)) {
x = result[[ idx ]]
result[[ idx ]] = pmin(x, 1)
result[[ idx + 1 ]] = result[[ idx + 1 ]] + pmax(x - 1, 0)
}
result
}
我们有
> all.equal(update(dt), dt_expected)
[1] TRUE
我不知道如何将其转化为有效的 data.table 语法,但是 'works' 函数在 data.table、update(as.data.table(dt))
.[=17 上=]
不确定是否有更有效的内置函数方法,但我只是编写了一个递归函数来实现您描述的行算法,然后将其应用于每一行。
f <- function(l, rest = 0, out = list()) {
if (length(l) == 0) return(unlist(out))
if (l[[1]] + rest <= 1) {
f(l[-1], rest = 0, out = append(out, list(l[[1]] + rest)))
} else (
f(l[-1], rest = l[[1]] + rest - 1, out = append(out, list(1)))
)
}
dt[-1] <- apply(dt[-1], 1, f, simplify = F) |>
do.call(what = rbind)
dt
#> # A tibble: 10 × 7
#> ID `2015` `2016` `2017` `2018` `2019` `2020`
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 0 0 0.685 1 0.0959 0.438
#> 2 2 0.822 1 0.370 0.548 0 0
#> 3 3 0 0 0 1 0.918 0
#> 4 4 0.137 0.274 0.685 0 1 0.0959
#> 5 5 0 0 0 0 0 0.274
#> 6 6 1 0.644 0.548 0 0.959 0.685
#> 7 7 0.274 0 0 0 0.548 0
#> 8 8 0.822 1 1 1 0.288 0
#> 9 9 1 1 1 1 1 0
#> 10 10 0 0 0 1 1 1
由 reprex package (v2.0.1)
于 2022-03-25 创建Martin Morgan 对 data.table 的回答的翻译:
for (i in 2:(ncol(dt) - 1)) {
x = dt[[i]]
set(dt, j = i, value = pmin(x, 1))
set(dt, j = i + 1, value = dt[[i + 1L]] + pmax(x - 1, 0))
}
这是我的解决方案:
dt |>
pivot_longer(cols = -ID, "year") |>
arrange(ID, year) |>
group_by(ID) |>
mutate(x = {
r <- accumulate(value,
~max(0,.y + .x - 1),
.init = 0)
pmin(1, value + head(r, -1))
}) |>
select(x, year, ID) |>
pivot_wider(names_from = "year", values_from = "x")
##> + # A tibble: 10 × 7
##> # Groups: ID [10]
##> ID `2015` `2016` `2017` `2018` `2019` `2020`
##> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##> 1 1 0 0 0.685 1 0.0959 0.438
##> 2 2 0.822 1 0.370 0.548 0 0
##> 3 3 0 0 0 1 0.918 0
##> 4 4 0.137 0.274 0.685 0 1 0.0959
##> 5 5 0 0 0 0 0 0.274
##> 6 6 1 0.644 0.548 0 0.959 0.685
##> 7 7 0.274 0 0 0 0.548 0
##> 8 8 0.822 1 1 1 0.288 0
##> 9 9 1 1 1 1 1 0
##> 10 10 0 0 0 1 1 1