如何使用 OpenCV 对齐照片 Python
How to align Foto using OpenCV Python
需要帮助,我正在尝试使用 OpenCV 对齐 2 张身份证。
如果我对同一个人的 2 张身份证执行此操作,则结果如下图所示
对齐前:
如果我尝试使用与下图相同的人 ID,则对齐效果非常好:
但是如果我对来自两个不同人的 2 张身份证进行处理,那么结果会很乱,在这种情况下需要有关如何对齐的帮助
import cv2
import numpy as np
import matplotlib.pyplot as plt
# Read reference image
refFilename = "KTP_Reza_Crop.jpeg"
print("Reading reference image : ", refFilename)
im1 = cv2.imread(refFilename, cv2.IMREAD_COLOR)
im1 = cv2.cvtColor(im1, cv2.COLOR_BGR2RGB)
# Read image to be aligned
imFilename = "KTP_Reza_No.jpeg"
print("Reading image to align : ", imFilename)
im2 = cv2.imread(imFilename, cv2.IMREAD_COLOR)
im2 = cv2.cvtColor(im2, cv2.COLOR_BGR2RGB)
plt.figure(figsize=[20,10]);
plt.subplot(121); plt.axis('off'); plt.imshow(im1); plt.title("Original Form")
plt.subplot(122); plt.axis('off'); plt.imshow(im2); plt.title("Testing Form")
# Convert images to grayscale
im1_gray = cv2.cvtColor(im1, cv2.COLOR_BGR2GRAY)
im2_gray = cv2.cvtColor(im2, cv2.COLOR_BGR2GRAY)
# Detect ORB features and compute descriptors.
MAX_NUM_FEATURES = 500
orb = cv2.ORB_create(MAX_NUM_FEATURES)
keypoints1, descriptors1 = orb.detectAndCompute(im1_gray, None)
keypoints2, descriptors2 = orb.detectAndCompute(im2_gray, None)
# Display
im1_display = cv2.drawKeypoints(im1, keypoints1, outImage=np.array([]), color=(255, 0, 0), flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
im2_display = cv2.drawKeypoints(im2, keypoints2, outImage=np.array([]), color=(255, 0, 0), flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
plt.figure(figsize=[20,10])
plt.subplot(121); plt.axis('off'); plt.imshow(im1_display); plt.title("Original Form");
plt.subplot(122); plt.axis('off'); plt.imshow(im2_display); plt.title("Testing Form");
# Match features.
matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING)
matches = matcher.match(descriptors1, descriptors2, None)
# Sort matches by score
matches = sorted(matches, key = lambda x:x.distance)
# Remove not so good matches
numGoodMatches = int(len(matches) * 0.1)
matches = matches[:numGoodMatches]
# Draw top matches
im_matches = cv2.drawMatches(im1, keypoints1, im2, keypoints2, matches, None)
plt.figure(figsize=[40,10])
plt.imshow(im_matches); plt.axis('off'); plt.title("Original Form");
# Extract location of good matches
points1 = np.zeros((len(matches), 2), dtype=np.float32)
points2 = np.zeros((len(matches), 2), dtype=np.float32)
for i, match in enumerate(matches):
points1[i, :] = keypoints1[match.queryIdx].pt
points2[i, :] = keypoints2[match.trainIdx].pt
# Find homography
h, mask = cv2.findHomography(points2, points1, cv2.RANSAC)
# Use homography to warp image
height, width, channels = im1.shape
im2_reg = cv2.warpPerspective(im2, h, (width, height))
# Display results
plt.figure(figsize=[20,10]);
plt.subplot(121); plt.imshow(im1); plt.axis('off'); plt.title("Original Form");
plt.subplot(122); plt.imshow(im2_reg); plt.axis('off'); plt.title("Testing Form");
两张不同人的身份证可能效果不佳,因为在这种情况下,两张图像将相似但不完全相同,例如:姓名不同,照片不同等,因此图像的关键点和描述符会有所不同,并且您的输出会受到影响。
您可以使用边缘检测并选择最大的轮廓来检测身份证的外边缘,然后使用 perspective transform 获得自上而下的视图(如果这是您的目标)。
需要帮助,我正在尝试使用 OpenCV 对齐 2 张身份证。 如果我对同一个人的 2 张身份证执行此操作,则结果如下图所示
对齐前:
如果我尝试使用与下图相同的人 ID,则对齐效果非常好:
但是如果我对来自两个不同人的 2 张身份证进行处理,那么结果会很乱,在这种情况下需要有关如何对齐的帮助
import cv2
import numpy as np
import matplotlib.pyplot as plt
# Read reference image
refFilename = "KTP_Reza_Crop.jpeg"
print("Reading reference image : ", refFilename)
im1 = cv2.imread(refFilename, cv2.IMREAD_COLOR)
im1 = cv2.cvtColor(im1, cv2.COLOR_BGR2RGB)
# Read image to be aligned
imFilename = "KTP_Reza_No.jpeg"
print("Reading image to align : ", imFilename)
im2 = cv2.imread(imFilename, cv2.IMREAD_COLOR)
im2 = cv2.cvtColor(im2, cv2.COLOR_BGR2RGB)
plt.figure(figsize=[20,10]);
plt.subplot(121); plt.axis('off'); plt.imshow(im1); plt.title("Original Form")
plt.subplot(122); plt.axis('off'); plt.imshow(im2); plt.title("Testing Form")
# Convert images to grayscale
im1_gray = cv2.cvtColor(im1, cv2.COLOR_BGR2GRAY)
im2_gray = cv2.cvtColor(im2, cv2.COLOR_BGR2GRAY)
# Detect ORB features and compute descriptors.
MAX_NUM_FEATURES = 500
orb = cv2.ORB_create(MAX_NUM_FEATURES)
keypoints1, descriptors1 = orb.detectAndCompute(im1_gray, None)
keypoints2, descriptors2 = orb.detectAndCompute(im2_gray, None)
# Display
im1_display = cv2.drawKeypoints(im1, keypoints1, outImage=np.array([]), color=(255, 0, 0), flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
im2_display = cv2.drawKeypoints(im2, keypoints2, outImage=np.array([]), color=(255, 0, 0), flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
plt.figure(figsize=[20,10])
plt.subplot(121); plt.axis('off'); plt.imshow(im1_display); plt.title("Original Form");
plt.subplot(122); plt.axis('off'); plt.imshow(im2_display); plt.title("Testing Form");
# Match features.
matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING)
matches = matcher.match(descriptors1, descriptors2, None)
# Sort matches by score
matches = sorted(matches, key = lambda x:x.distance)
# Remove not so good matches
numGoodMatches = int(len(matches) * 0.1)
matches = matches[:numGoodMatches]
# Draw top matches
im_matches = cv2.drawMatches(im1, keypoints1, im2, keypoints2, matches, None)
plt.figure(figsize=[40,10])
plt.imshow(im_matches); plt.axis('off'); plt.title("Original Form");
# Extract location of good matches
points1 = np.zeros((len(matches), 2), dtype=np.float32)
points2 = np.zeros((len(matches), 2), dtype=np.float32)
for i, match in enumerate(matches):
points1[i, :] = keypoints1[match.queryIdx].pt
points2[i, :] = keypoints2[match.trainIdx].pt
# Find homography
h, mask = cv2.findHomography(points2, points1, cv2.RANSAC)
# Use homography to warp image
height, width, channels = im1.shape
im2_reg = cv2.warpPerspective(im2, h, (width, height))
# Display results
plt.figure(figsize=[20,10]);
plt.subplot(121); plt.imshow(im1); plt.axis('off'); plt.title("Original Form");
plt.subplot(122); plt.imshow(im2_reg); plt.axis('off'); plt.title("Testing Form");
两张不同人的身份证可能效果不佳,因为在这种情况下,两张图像将相似但不完全相同,例如:姓名不同,照片不同等,因此图像的关键点和描述符会有所不同,并且您的输出会受到影响。
您可以使用边缘检测并选择最大的轮廓来检测身份证的外边缘,然后使用 perspective transform 获得自上而下的视图(如果这是您的目标)。