使用 ONNX 转换模型
Using ONNX converted model
伙计们,我正在做一个情感分析项目,我将一个 BERT 模型转换为一个 ONNX 模型,因为当我想给它一个巨大的数据来预测时,原始模型有一个巨大的运行时间。但是现在我不知道如何使用这个ONNX模型。我将以正常方式运行模型时粘贴我的原始代码。
顺便说一句,如果有人有任何建议可以优化代码或模型而无需使用 ONNX 或 Openvino,我将不胜感激。
Link到模特抱脸网站
cosining = spatial.distance.cosine
X_pos_test = model.encode(pos_test)
X_neg_test = model.encode(neg_test)
sentence_tokenize = hazm.sent_tokenize # It's a tokenizer to finding Farsi sentences in texts
def predicting(string, api_value, model):
cs = {'Sentence': [], 'Negative Score': [], 'Positive Score': [] }
for i in range(len(api_value)):
api_value[i] = cleaning_text(api_value[i]) # Normalizing texts
sentence_tokenized = np.array(sentence_tokenize(api_value[i]))
for sentence in range(len(sentence_tokenized)):
encoded_sentence_tokenized = model.encode(sentence_tokenized[sentence])
neg_result = 1 - cosining(X_neg_test, encoded_sentence_tokenized) # for negative
pos_result = 1 - cosining(X_pos_test, encoded_sentence_tokenized) # for positive
cs['Sentence'].append(sentence_tokenized[sentence])
cs['Negative Score'].append(neg_result)
cs['Positive Score'].append(pos_result)
cs_finall = pd.DataFrame(cs)
cs_finall.to_excel(string + " score.xlsx", index=False)
return cs_finall
我在 this article 中找到了答案,它来自 huggingface 网站。我希望它可以帮助别人
伙计们,我正在做一个情感分析项目,我将一个 BERT 模型转换为一个 ONNX 模型,因为当我想给它一个巨大的数据来预测时,原始模型有一个巨大的运行时间。但是现在我不知道如何使用这个ONNX模型。我将以正常方式运行模型时粘贴我的原始代码。
顺便说一句,如果有人有任何建议可以优化代码或模型而无需使用 ONNX 或 Openvino,我将不胜感激。
Link到模特抱脸网站
cosining = spatial.distance.cosine
X_pos_test = model.encode(pos_test)
X_neg_test = model.encode(neg_test)
sentence_tokenize = hazm.sent_tokenize # It's a tokenizer to finding Farsi sentences in texts
def predicting(string, api_value, model):
cs = {'Sentence': [], 'Negative Score': [], 'Positive Score': [] }
for i in range(len(api_value)):
api_value[i] = cleaning_text(api_value[i]) # Normalizing texts
sentence_tokenized = np.array(sentence_tokenize(api_value[i]))
for sentence in range(len(sentence_tokenized)):
encoded_sentence_tokenized = model.encode(sentence_tokenized[sentence])
neg_result = 1 - cosining(X_neg_test, encoded_sentence_tokenized) # for negative
pos_result = 1 - cosining(X_pos_test, encoded_sentence_tokenized) # for positive
cs['Sentence'].append(sentence_tokenized[sentence])
cs['Negative Score'].append(neg_result)
cs['Positive Score'].append(pos_result)
cs_finall = pd.DataFrame(cs)
cs_finall.to_excel(string + " score.xlsx", index=False)
return cs_finall
我在 this article 中找到了答案,它来自 huggingface 网站。我希望它可以帮助别人