非线性规划 R 闪亮的输入问题
Nonlinear programming R shiny problems with inputs
我有一个错误:STRING_ELT () 只能应用于 'character vector',而不是 'NULL'。
如果我尝试将 objective 函数和约束添加到函数 eval_f、eval_g_eq 和 eval_g_ineq 的原始代码中,它会计算所有内容,但问题是根据输入计算。我不确定我是否对这些功能输入错误或出了什么问题。
library(shiny)
library(shinythemes)
library(nloptr)
eval_f <<- function(x)
{
return (obj)
}
eval_g_eq <<- function(x)
{
return(eq)
}
eval_g_ineq <<- function(x)
{
return(ineq)
}
ui <- fluidPage(theme = shinytheme("united"),
navbarPage(" Optimization",
tabPanel("Nonlinear programming",
sidebarLayout(
sidebarPanel(
h3('Please enter nonlinear problem for solving'),
textInput('obj', 'Objective function ', "x[1]*x[4]*(x[1] +x[2] + x[3]) + x[3]"),
textInput('eq', 'Equality constraints ', "x[1]^2 + x[2]^2 + x[3]^2 + x[4]^2 - 40"),
textInput('ineq', 'Inequality constraints', "25 - x[1]*x[2]*x[3]*x[4]"),
textInput('lb', 'Lower bounds (comma separated)', "1,1,1,1"),
textInput('ub', 'Upper bounds (comma separated)', "5,5,5,5"),
textInput('x0', 'Initial values (comma separated)', "1,5,5,1"),
submitButton('Submit')
),
mainPanel(
h4('The result is:'),
verbatimTextOutput("res")
)
)
)
)
)
server <- function(input, output, session) {
output$res<-renderPrint({
obj<<- as.vector(input$obj)
eq <<-as.vector(input$eq)
ineq <<-as.vector(input$ineq)
lb <<- as.numeric(unlist(strsplit(input$lb,",")))
ub <<- as.numeric(unlist(strsplit(input$ub,",")))
x0 <<- as.numeric(unlist(strsplit(input$x0,",")))
local_opts <- list( "algorithm" = "NLOPT_GN_ISRES", "xtol_rel" = 1.0e-15 )
opts <- list( "algorithm"= "NLOPT_GN_ISRES",
"xtol_rel"= 1.0e-15,
"maxeval"= 160000,
"local_opts" = local_opts,
"print_level" = 0 )
res <- nloptr ( x0 = x0,
eval_f = eval_f,
lb = lb,
ub = ub,
eval_g_ineq = eval_g_ineq,
eval_g_eq = eval_g_eq,
opts = opts)
cat("Result:\n")
print(res)
}
)
}
# Run the application
shinyApp(ui = ui, server = server)
你这里有一些问题。
- 函数需要在服务器内部定义,因为您不传递反应变量。
- 需要对
textInput
得到的公式进行解析求值
- 运行 仅在单击操作按钮
Submit
后进行分析。这样您就可以在计算之前修改所有输入。
试试这个
library(shiny)
library(shinythemes)
library(nloptr)
ui <- fluidPage(theme = shinytheme("united"),
navbarPage(" Optimization",
tabPanel("Nonlinear programming",
sidebarLayout(
sidebarPanel(
h3('Please enter nonlinear problem for solving'),
textInput('obj', 'Objective function ', "x[1]*x[4]*(x[1] +x[2] + x[3]) + x[3]"),
textInput('eq', 'Equality constraints ', "x[1]^2 + x[2]^2 + x[3]^2 + x[4]^2 - 40"),
textInput('ineq', 'Inequality constraints', "25 - x[1]*x[2]*x[3]*x[4]"),
textInput('lb', 'Lower bounds (comma separated)', "1,1,1,1"),
textInput('ub', 'Upper bounds (comma separated)', "5,5,5,5"),
textInput('x0', 'Initial values (comma separated)', "1,5,5,1"),
actionButton('submit',"Submit")
),
mainPanel(
h4('The result is:'),
verbatimTextOutput("res")
)
)
)
)
)
server <- function(input, output, session) {
eval_f <- function( x ) {
req(input$obj)
return( list( "objective" = rlang::eval_tidy(rlang::parse_expr(as.character(input$obj))),
"gradient" = c( x[1] * x[4] + x[4] * (x[1] + x[2] + x[3]),
x[1] * x[4],
x[1] * x[4] + 1.0,
x[1] * (x[1] + x[2] + x[3]) )
) )
}
# constraint functions
# inequalities
eval_g_ineq <- function( x ) {
constr <- rlang::eval_tidy(rlang::parse_expr(as.character(input$ineq))) # c( 25 - x[1] * x[2] * x[3] * x[4] )
grad <- c( -x[2]*x[3]*x[4],
-x[1]*x[3]*x[4],
-x[1]*x[2]*x[4],
-x[1]*x[2]*x[3] )
return( list( "constraints"=constr, "jacobian"=grad ) )
}
# equalities
eval_g_eq <- function( x ) {
constr <- rlang::eval_tidy(rlang::parse_expr(as.character(input$eq))) # c( x[1]^2 + x[2]^2 + x[3]^2 + x[4]^2 - 40 )
grad <- c( 2.0*x[1],
2.0*x[2],
2.0*x[3],
2.0*x[4] )
return( list( "constraints"=constr, "jacobian"=grad ) )
}
res <- eventReactive(input$submit, {
req(input$obj,input$ineq,input$eq,input$lb,input$ub,input$x0)
lb <<- as.numeric(unlist(strsplit(input$lb,",")))
ub <<- as.numeric(unlist(strsplit(input$ub,",")))
x0 <<- as.numeric(unlist(strsplit(input$x0,",")))
local_opts <- list( "algorithm" = "NLOPT_GN_ISRES", "xtol_rel" = 1.0e-15 )
opts <- list( "algorithm"= "NLOPT_GN_ISRES",
"xtol_rel"= 1.0e-15,
"maxeval"= 16000,
"local_opts" = local_opts,
"print_level" = 0 )
res <- nloptr ( x0 = x0,
eval_f = eval_f,
lb = lb,
ub = ub,
eval_g_ineq = eval_g_ineq,
eval_g_eq = eval_g_eq,
opts = opts)
res
})
output$res<-renderPrint({
cat("Result:\n")
print(res())
})
}
# Run the application
shinyApp(ui = ui, server = server)
我有一个错误:STRING_ELT () 只能应用于 'character vector',而不是 'NULL'。
如果我尝试将 objective 函数和约束添加到函数 eval_f、eval_g_eq 和 eval_g_ineq 的原始代码中,它会计算所有内容,但问题是根据输入计算。我不确定我是否对这些功能输入错误或出了什么问题。
library(shiny)
library(shinythemes)
library(nloptr)
eval_f <<- function(x)
{
return (obj)
}
eval_g_eq <<- function(x)
{
return(eq)
}
eval_g_ineq <<- function(x)
{
return(ineq)
}
ui <- fluidPage(theme = shinytheme("united"),
navbarPage(" Optimization",
tabPanel("Nonlinear programming",
sidebarLayout(
sidebarPanel(
h3('Please enter nonlinear problem for solving'),
textInput('obj', 'Objective function ', "x[1]*x[4]*(x[1] +x[2] + x[3]) + x[3]"),
textInput('eq', 'Equality constraints ', "x[1]^2 + x[2]^2 + x[3]^2 + x[4]^2 - 40"),
textInput('ineq', 'Inequality constraints', "25 - x[1]*x[2]*x[3]*x[4]"),
textInput('lb', 'Lower bounds (comma separated)', "1,1,1,1"),
textInput('ub', 'Upper bounds (comma separated)', "5,5,5,5"),
textInput('x0', 'Initial values (comma separated)', "1,5,5,1"),
submitButton('Submit')
),
mainPanel(
h4('The result is:'),
verbatimTextOutput("res")
)
)
)
)
)
server <- function(input, output, session) {
output$res<-renderPrint({
obj<<- as.vector(input$obj)
eq <<-as.vector(input$eq)
ineq <<-as.vector(input$ineq)
lb <<- as.numeric(unlist(strsplit(input$lb,",")))
ub <<- as.numeric(unlist(strsplit(input$ub,",")))
x0 <<- as.numeric(unlist(strsplit(input$x0,",")))
local_opts <- list( "algorithm" = "NLOPT_GN_ISRES", "xtol_rel" = 1.0e-15 )
opts <- list( "algorithm"= "NLOPT_GN_ISRES",
"xtol_rel"= 1.0e-15,
"maxeval"= 160000,
"local_opts" = local_opts,
"print_level" = 0 )
res <- nloptr ( x0 = x0,
eval_f = eval_f,
lb = lb,
ub = ub,
eval_g_ineq = eval_g_ineq,
eval_g_eq = eval_g_eq,
opts = opts)
cat("Result:\n")
print(res)
}
)
}
# Run the application
shinyApp(ui = ui, server = server)
你这里有一些问题。
- 函数需要在服务器内部定义,因为您不传递反应变量。
- 需要对
textInput
得到的公式进行解析求值
- 运行 仅在单击操作按钮
Submit
后进行分析。这样您就可以在计算之前修改所有输入。
试试这个
library(shiny)
library(shinythemes)
library(nloptr)
ui <- fluidPage(theme = shinytheme("united"),
navbarPage(" Optimization",
tabPanel("Nonlinear programming",
sidebarLayout(
sidebarPanel(
h3('Please enter nonlinear problem for solving'),
textInput('obj', 'Objective function ', "x[1]*x[4]*(x[1] +x[2] + x[3]) + x[3]"),
textInput('eq', 'Equality constraints ', "x[1]^2 + x[2]^2 + x[3]^2 + x[4]^2 - 40"),
textInput('ineq', 'Inequality constraints', "25 - x[1]*x[2]*x[3]*x[4]"),
textInput('lb', 'Lower bounds (comma separated)', "1,1,1,1"),
textInput('ub', 'Upper bounds (comma separated)', "5,5,5,5"),
textInput('x0', 'Initial values (comma separated)', "1,5,5,1"),
actionButton('submit',"Submit")
),
mainPanel(
h4('The result is:'),
verbatimTextOutput("res")
)
)
)
)
)
server <- function(input, output, session) {
eval_f <- function( x ) {
req(input$obj)
return( list( "objective" = rlang::eval_tidy(rlang::parse_expr(as.character(input$obj))),
"gradient" = c( x[1] * x[4] + x[4] * (x[1] + x[2] + x[3]),
x[1] * x[4],
x[1] * x[4] + 1.0,
x[1] * (x[1] + x[2] + x[3]) )
) )
}
# constraint functions
# inequalities
eval_g_ineq <- function( x ) {
constr <- rlang::eval_tidy(rlang::parse_expr(as.character(input$ineq))) # c( 25 - x[1] * x[2] * x[3] * x[4] )
grad <- c( -x[2]*x[3]*x[4],
-x[1]*x[3]*x[4],
-x[1]*x[2]*x[4],
-x[1]*x[2]*x[3] )
return( list( "constraints"=constr, "jacobian"=grad ) )
}
# equalities
eval_g_eq <- function( x ) {
constr <- rlang::eval_tidy(rlang::parse_expr(as.character(input$eq))) # c( x[1]^2 + x[2]^2 + x[3]^2 + x[4]^2 - 40 )
grad <- c( 2.0*x[1],
2.0*x[2],
2.0*x[3],
2.0*x[4] )
return( list( "constraints"=constr, "jacobian"=grad ) )
}
res <- eventReactive(input$submit, {
req(input$obj,input$ineq,input$eq,input$lb,input$ub,input$x0)
lb <<- as.numeric(unlist(strsplit(input$lb,",")))
ub <<- as.numeric(unlist(strsplit(input$ub,",")))
x0 <<- as.numeric(unlist(strsplit(input$x0,",")))
local_opts <- list( "algorithm" = "NLOPT_GN_ISRES", "xtol_rel" = 1.0e-15 )
opts <- list( "algorithm"= "NLOPT_GN_ISRES",
"xtol_rel"= 1.0e-15,
"maxeval"= 16000,
"local_opts" = local_opts,
"print_level" = 0 )
res <- nloptr ( x0 = x0,
eval_f = eval_f,
lb = lb,
ub = ub,
eval_g_ineq = eval_g_ineq,
eval_g_eq = eval_g_eq,
opts = opts)
res
})
output$res<-renderPrint({
cat("Result:\n")
print(res())
})
}
# Run the application
shinyApp(ui = ui, server = server)