我的 void_t 包装器而不是回退的编译时错误
Compile time error on my void_t wrapper intead of fallback
最近我尝试编写围绕 void_t 的 wrapper 简单的成语如下:
namespace detail {
template <class Traits, class = void>
struct applicable : std::false_type {};
template <class... Traits>
struct applicable<std::tuple<Traits...>, std::void_t<Traits...>>
: std::true_type {};
} // namespace detail
template <class... Traits>
using applicable = detail::applicable<Traits...>;
和调用方类似的东西
template <class T>
using call_foo = decltype(std::declval<T>().foo());
template <class T>
using has_foo = applicable<call_foo<T>>;
auto main() -> int {
std::cout << std::boolalpha << has_foo<std::vector<int>>::value;
}
但是我得到了预期的“false”,我得到了编译时错误:
error: 'class std::vector<int, std::allocator<int> >' has no member named 'foo'
using has_foo = my::applicable<call_foo<T>>;
怎么了?
更新:
在特征中使用参数包背后的想法是按如下方式使用此适用的元函数:
template <class T>
using call_foo = decltype(std::declval<T>().foo());
template <class T>
using call_boo = decltype(std::declval<T>().boo());
template <class T>
using call_bar = decltype(std::declval<T>().bar());
template <class T>
using has_foo_and_boo_and_bar = applicable<call_foo<T>, call_boo<T>, call_bar<T>>;
这里的关键不是将 trait 应用到多个 class 上,而是将多个 trait 应用到一个 class 上而不使用 std::conjunction
.
类似的东西:
#include <type_traits>
#include <vector>
using namespace std;
struct Foo{
int foo() { return 1 ;}
};
// transform an "maybe type" into a classic type traite
// We use T and not Args... so we can have a default type at the end
// we can use a type container (like tuple) but it need some extra boilerplate
template<template<class...> class Traits, class T, class = void>
struct applicable : std::false_type {};
template<template<class...> class Traits, class T>
struct applicable<
Traits,
T,
std::void_t< Traits<T> >
> : std::true_type {};
// not an usual type trait, I will call this a "maybe type"
template <class T>
using call_foo = decltype(std::declval<T>().foo());
// creating a type trait with a maybe type
template<class T>
using has_foo_one = applicable<call_foo, T>;
static_assert( has_foo_one<std::vector<int>>::value == false );
static_assert( has_foo_one<Foo>::value == true );
// we need a way to check multiple type at once
template <
template<class...> class Traits,
class... Args
>
inline constexpr bool all_applicable = (applicable<Traits,Args>::value && ...);
static_assert( all_applicable<call_foo,Foo,Foo> == true );
static_assert( all_applicable<call_foo,Foo,int> == false );
template<class ... Args>
struct List{};
// if you want the exact same syntaxe
template<
template<class...> class Traits, // the type traits
class List, // the extra boilerplate for transforming args... into a single class
class = void // classic SFINAE
>
struct applicable_variadic : std::false_type {};
template<
template<class...> class Traits,
class... Args
>
struct applicable_variadic
<Traits,
List<Args...>, // can be std::tuple, or std::void_t but have to match line "using has_foo..."
std::enable_if_t<all_applicable<Traits, Args...> // will be "void" if all args match Traits
>
> : std::true_type {};
template<class... Args>
using has_foo = applicable_variadic<call_foo, List<Args...>>;
static_assert( has_foo<Foo,Foo>::value == true );
static_assert( has_foo<Foo>::value == true );
static_assert( has_foo<Foo,int>::value == false );
int main() {
return 1;
}
https://godbolt.org/z/rzqY7G9ed
你可能可以一次写完,但我把每一部分都分开了。当我稍后回头看我的代码时,我发现它更容易理解。
注:
在您想要的更新中:
template <class T>
using call_foo = decltype(std::declval<T>().foo());
template <class T>
using call_boo = decltype(std::declval<T>().boo());
template <class T>
using call_bar = decltype(std::declval<T>().bar());
template <class T>
using has_foo_and_boo_and_bar = applicable<call_foo<T>, call_boo<T>, call_bar<T>>;
不可能。 applicable<int, ERROR_TYPE>
不会编译。这不是“替换错误”,而是错误。
你有 2 个选项(据我所知)
- 使用布尔逻辑
applicable<traits_foo<T>::value, traits_bar<T>::value>
。注意 value
。在这种情况下,每个类型特征都会判断 属性 是否得到尊重,而 applicable
只会检查所有布尔值是否为真。
- 传递一些模板 class(所以不是
type_traits<T>
而只是 type_traits
)和类型来检查和使用适用的 SFINAE。那就是我在下面所做的。
同理,我们可以创建一个“模板列表class”。在此实现中,我们期望类型特征具有 ::value
这就是为什么我通过 has_bar_one
而不是 call_bar
template<template<class...> class... Traits>
struct list_of_template_class{};
template<
class ListOfTraits,
class T,
class = void
>
struct applicable_X_traits : std::false_type {};
template<
template<class...> class... Traits ,
class T
>
struct applicable_X_traits
<list_of_template_class<Traits...>,
T,
std::enable_if_t< ( Traits<T>::value && ...) >
> : std::true_type {};
template <class T>
using call_bar = decltype(std::declval<T>().foo());
template<class T>
using has_bar_one = applicable<call_foo, T>;
template<class T>
using has_foo_bar = applicable_X_traits<
list_of_template_class<has_bar_one, has_foo_one>,
T
>;
static_assert(has_foo_bar<Foo>::value == true );
static_assert(has_foo_bar<int>::value == false );
struct JustBar {
void bar() { }
};
static_assert(has_foo_bar<JustBar>::value == false );
https://godbolt.org/z/K77o3KxTj
或者直接使用Boost::Hana
// If you have an instance of T you can just do :
auto has_foo_bar_simpler = hana::is_valid([](auto&& p) -> std::void_t<
decltype(p.foo()),
decltype(p.bar())
>{ });
static_assert(has_foo_bar_simpler(1) == false );
static_assert(has_foo_bar_simpler(JustBar{}) == false );
static_assert(has_foo_bar_simpler(Foo{}) == true );
// if not
template<class T>
constexpr bool has_foo_bar_simpler2 = decltype(has_foo_bar_simpler(std::declval<T>())){};
static_assert(has_foo_bar_simpler2<int> == false );
static_assert(has_foo_bar_simpler2<JustBar> == false );
static_assert(has_foo_bar_simpler2<Foo> == true );
最近我尝试编写围绕 void_t 的 wrapper 简单的成语如下:
namespace detail {
template <class Traits, class = void>
struct applicable : std::false_type {};
template <class... Traits>
struct applicable<std::tuple<Traits...>, std::void_t<Traits...>>
: std::true_type {};
} // namespace detail
template <class... Traits>
using applicable = detail::applicable<Traits...>;
和调用方类似的东西
template <class T>
using call_foo = decltype(std::declval<T>().foo());
template <class T>
using has_foo = applicable<call_foo<T>>;
auto main() -> int {
std::cout << std::boolalpha << has_foo<std::vector<int>>::value;
}
但是我得到了预期的“false”,我得到了编译时错误:
error: 'class std::vector<int, std::allocator<int> >' has no member named 'foo'
using has_foo = my::applicable<call_foo<T>>;
怎么了?
更新: 在特征中使用参数包背后的想法是按如下方式使用此适用的元函数:
template <class T>
using call_foo = decltype(std::declval<T>().foo());
template <class T>
using call_boo = decltype(std::declval<T>().boo());
template <class T>
using call_bar = decltype(std::declval<T>().bar());
template <class T>
using has_foo_and_boo_and_bar = applicable<call_foo<T>, call_boo<T>, call_bar<T>>;
这里的关键不是将 trait 应用到多个 class 上,而是将多个 trait 应用到一个 class 上而不使用 std::conjunction
.
类似的东西:
#include <type_traits>
#include <vector>
using namespace std;
struct Foo{
int foo() { return 1 ;}
};
// transform an "maybe type" into a classic type traite
// We use T and not Args... so we can have a default type at the end
// we can use a type container (like tuple) but it need some extra boilerplate
template<template<class...> class Traits, class T, class = void>
struct applicable : std::false_type {};
template<template<class...> class Traits, class T>
struct applicable<
Traits,
T,
std::void_t< Traits<T> >
> : std::true_type {};
// not an usual type trait, I will call this a "maybe type"
template <class T>
using call_foo = decltype(std::declval<T>().foo());
// creating a type trait with a maybe type
template<class T>
using has_foo_one = applicable<call_foo, T>;
static_assert( has_foo_one<std::vector<int>>::value == false );
static_assert( has_foo_one<Foo>::value == true );
// we need a way to check multiple type at once
template <
template<class...> class Traits,
class... Args
>
inline constexpr bool all_applicable = (applicable<Traits,Args>::value && ...);
static_assert( all_applicable<call_foo,Foo,Foo> == true );
static_assert( all_applicable<call_foo,Foo,int> == false );
template<class ... Args>
struct List{};
// if you want the exact same syntaxe
template<
template<class...> class Traits, // the type traits
class List, // the extra boilerplate for transforming args... into a single class
class = void // classic SFINAE
>
struct applicable_variadic : std::false_type {};
template<
template<class...> class Traits,
class... Args
>
struct applicable_variadic
<Traits,
List<Args...>, // can be std::tuple, or std::void_t but have to match line "using has_foo..."
std::enable_if_t<all_applicable<Traits, Args...> // will be "void" if all args match Traits
>
> : std::true_type {};
template<class... Args>
using has_foo = applicable_variadic<call_foo, List<Args...>>;
static_assert( has_foo<Foo,Foo>::value == true );
static_assert( has_foo<Foo>::value == true );
static_assert( has_foo<Foo,int>::value == false );
int main() {
return 1;
}
https://godbolt.org/z/rzqY7G9ed
你可能可以一次写完,但我把每一部分都分开了。当我稍后回头看我的代码时,我发现它更容易理解。
注:
在您想要的更新中:
template <class T>
using call_foo = decltype(std::declval<T>().foo());
template <class T>
using call_boo = decltype(std::declval<T>().boo());
template <class T>
using call_bar = decltype(std::declval<T>().bar());
template <class T>
using has_foo_and_boo_and_bar = applicable<call_foo<T>, call_boo<T>, call_bar<T>>;
不可能。 applicable<int, ERROR_TYPE>
不会编译。这不是“替换错误”,而是错误。
你有 2 个选项(据我所知)
- 使用布尔逻辑
applicable<traits_foo<T>::value, traits_bar<T>::value>
。注意value
。在这种情况下,每个类型特征都会判断 属性 是否得到尊重,而applicable
只会检查所有布尔值是否为真。 - 传递一些模板 class(所以不是
type_traits<T>
而只是type_traits
)和类型来检查和使用适用的 SFINAE。那就是我在下面所做的。
同理,我们可以创建一个“模板列表class”。在此实现中,我们期望类型特征具有 ::value
这就是为什么我通过 has_bar_one
而不是 call_bar
template<template<class...> class... Traits>
struct list_of_template_class{};
template<
class ListOfTraits,
class T,
class = void
>
struct applicable_X_traits : std::false_type {};
template<
template<class...> class... Traits ,
class T
>
struct applicable_X_traits
<list_of_template_class<Traits...>,
T,
std::enable_if_t< ( Traits<T>::value && ...) >
> : std::true_type {};
template <class T>
using call_bar = decltype(std::declval<T>().foo());
template<class T>
using has_bar_one = applicable<call_foo, T>;
template<class T>
using has_foo_bar = applicable_X_traits<
list_of_template_class<has_bar_one, has_foo_one>,
T
>;
static_assert(has_foo_bar<Foo>::value == true );
static_assert(has_foo_bar<int>::value == false );
struct JustBar {
void bar() { }
};
static_assert(has_foo_bar<JustBar>::value == false );
https://godbolt.org/z/K77o3KxTj
或者直接使用Boost::Hana
// If you have an instance of T you can just do :
auto has_foo_bar_simpler = hana::is_valid([](auto&& p) -> std::void_t<
decltype(p.foo()),
decltype(p.bar())
>{ });
static_assert(has_foo_bar_simpler(1) == false );
static_assert(has_foo_bar_simpler(JustBar{}) == false );
static_assert(has_foo_bar_simpler(Foo{}) == true );
// if not
template<class T>
constexpr bool has_foo_bar_simpler2 = decltype(has_foo_bar_simpler(std::declval<T>())){};
static_assert(has_foo_bar_simpler2<int> == false );
static_assert(has_foo_bar_simpler2<JustBar> == false );
static_assert(has_foo_bar_simpler2<Foo> == true );