汇总周数并修改从列中检索到的 headers
Aggregate weeks and modify headers retrieved from column
我正在尝试每周汇总数据。
| Timestamp | District |
| -------- | -------------- |
| 2015-01-16 | Kreuzberg |
| 2015-01-10 | Charlottenburg |
| 2015-02-09 | Mitte |
| 2014-10-10 | Lichtenberg |
每个时间戳代表一个病人。我想要实现的是将地区设置为 headers 并将时间戳汇总为数周。重要的是要了解每个地区每周有多少人感染。
| Week | Kreuzberg | Charlottenburg | Mitte | Lichtenberg
| -------- | ----------| ---------- | ----- | ----------
| 2015-01-16 | 1 | 0 | 0 | 0
| 2015-01-10 | 0 | 1 | 0 | 0
| 2015-02-09 | 0 | 0 | 1 | 0
| 2014-10-10 | 0 | 0 | 0 | 1
到目前为止,我有以下代码,但没有提供我需要的结果。
new_df <-
df %>%
drop_na(Timestamp) %>%
mutate(week = floor_date(
Timestamp,
unit = "week")) %>%
count(week, District)
有什么建议吗?
最好的,
丹尼尔
根据您的代码,您可以通过管道传递一个 pivot_wider
函数:
library(dplyr)
library(tidyr)
library(lubridate)
df %>%
drop_na(Timestamp) %>%
mutate(week = floor_date(
Timestamp,
unit = "week")) %>%
count(week, District) %>%
pivot_wider(names_from = District, values_from = n, values_fill = 0)
这个returns
# A tibble: 4 x 5
week Lichtenberg Charlottenburg Kreuzberg Mitte
<date> <int> <int> <int> <int>
1 2014-10-05 1 0 0 0
2 2015-01-04 0 1 0 0
3 2015-01-11 0 0 1 0
4 2015-02-08 0 0 0 1
我正在尝试每周汇总数据。
| Timestamp | District |
| -------- | -------------- |
| 2015-01-16 | Kreuzberg |
| 2015-01-10 | Charlottenburg |
| 2015-02-09 | Mitte |
| 2014-10-10 | Lichtenberg |
每个时间戳代表一个病人。我想要实现的是将地区设置为 headers 并将时间戳汇总为数周。重要的是要了解每个地区每周有多少人感染。
| Week | Kreuzberg | Charlottenburg | Mitte | Lichtenberg
| -------- | ----------| ---------- | ----- | ----------
| 2015-01-16 | 1 | 0 | 0 | 0
| 2015-01-10 | 0 | 1 | 0 | 0
| 2015-02-09 | 0 | 0 | 1 | 0
| 2014-10-10 | 0 | 0 | 0 | 1
到目前为止,我有以下代码,但没有提供我需要的结果。
new_df <-
df %>%
drop_na(Timestamp) %>%
mutate(week = floor_date(
Timestamp,
unit = "week")) %>%
count(week, District)
有什么建议吗?
最好的, 丹尼尔
根据您的代码,您可以通过管道传递一个 pivot_wider
函数:
library(dplyr)
library(tidyr)
library(lubridate)
df %>%
drop_na(Timestamp) %>%
mutate(week = floor_date(
Timestamp,
unit = "week")) %>%
count(week, District) %>%
pivot_wider(names_from = District, values_from = n, values_fill = 0)
这个returns
# A tibble: 4 x 5
week Lichtenberg Charlottenburg Kreuzberg Mitte
<date> <int> <int> <int> <int>
1 2014-10-05 1 0 0 0
2 2015-01-04 0 1 0 0
3 2015-01-11 0 0 1 0
4 2015-02-08 0 0 0 1