如何在 python 中的多 class class 化问题上获取每个 class 的 SHAP 值
How to get SHAP values for each class on a multiclass classification problem in python
我有以下数据框:
import pandas as pd
import random
import xgboost
import shap
foo = pd.DataFrame({'id':[1,2,3,4,5,6,7,8,9,10],
'var1':random.sample(range(1, 100), 10),
'var2':random.sample(range(1, 100), 10),
'var3':random.sample(range(1, 100), 10),
'class': ['a','a','a','a','a','b','b','c','c','c']})
为此我想运行一个class化算法来预测3 class
es
所以我将我的数据集分成训练和测试,然后我 运行 一个 xgboost
cl_cols = foo.filter(regex='var').columns
X_train, X_test, y_train, y_test = train_test_split(foo[cl_cols],
foo[['class']],
test_size=0.33, random_state=42)
model = xgboost.XGBClassifier(objective="binary:logistic")
model.fit(X_train, y_train)
现在我想得到每个 class
的平均 SHAP 值
下面的代码产生了我想要的结果,但它使用 absolute SHAP 值来计算平均值,但我只需要平均值
shap_values = shap.TreeExplainer(model).shap_values(X_test)
shap.summary_plot(shap_values, X_test)
此外,该图将 class
标记为 0,1,2。我怎么知道 0,1 和 2 对应于原始文件中的哪个 class
?
因为这段代码:
shap.summary_plot(shap_values, X_test,
class_names= ['a', 'b', 'c'])
给予
和这段代码
shap.summary_plot(shap_values, X_test,
class_names= ['b', 'c', 'a'])
给予
所以我不再确定这个传说了。
有什么想法吗?
我有同样的问题,也许这个问题可以帮助:https://github.com/slundberg/shap/issues/764
我还没有测试过,但看起来顺序应该和你调用model.predict_proba()
时的顺序一样。上面的link建议使用summary plot的class_names=model.classes_
选项。
SHAP 值以列表形式返回。您可以通过其索引访问相关的 SHAP 绝对值。
对于您的 Class 0 的摘要图,代码为
shap.summary_plot(shap_values[0], X_test)
通过做一些研究并在 this post 和@Alessandro Nesti 的回答的帮助下,这是我的解决方案:
foo = pd.DataFrame({'id':[1,2,3,4,5,6,7,8,9,10],
'var1':random.sample(range(1, 100), 10),
'var2':random.sample(range(1, 100), 10),
'var3':random.sample(range(1, 100), 10),
'class': ['a','a','a','a','a','b','b','c','c','c']})
cl_cols = foo.filter(regex='var').columns
X_train, X_test, y_train, y_test = train_test_split(foo[cl_cols],
foo[['class']],
test_size=0.33, random_state=42)
model = xgboost.XGBClassifier(objective="multi:softmax")
model.fit(X_train, y_train)
def get_ABS_SHAP(df_shap,df):
#import matplotlib as plt
# Make a copy of the input data
shap_v = pd.DataFrame(df_shap)
feature_list = df.columns
shap_v.columns = feature_list
df_v = df.copy().reset_index().drop('index',axis=1)
# Determine the correlation in order to plot with different colors
corr_list = list()
for i in feature_list:
b = np.corrcoef(shap_v[i],df_v[i])[1][0]
corr_list.append(b)
corr_df = pd.concat([pd.Series(feature_list),pd.Series(corr_list)],axis=1).fillna(0)
# Make a data frame. Column 1 is the feature, and Column 2 is the correlation coefficient
corr_df.columns = ['Variable','Corr']
corr_df['Sign'] = np.where(corr_df['Corr']>0,'red','blue')
shap_abs = np.abs(shap_v)
k=pd.DataFrame(shap_abs.mean()).reset_index()
k.columns = ['Variable','SHAP_abs']
k2 = k.merge(corr_df,left_on = 'Variable',right_on='Variable',how='inner')
k2 = k2.sort_values(by='SHAP_abs',ascending = True)
k2_f = k2[['Variable', 'SHAP_abs', 'Corr']]
k2_f['SHAP_abs'] = k2_f['SHAP_abs'] * np.sign(k2_f['Corr'])
k2_f.drop(columns='Corr', inplace=True)
k2_f.rename(columns={'SHAP_abs': 'SHAP'}, inplace=True)
return k2_f
foo_all = pd.DataFrame()
for k,v in list(enumerate(model.classes_)):
foo = get_ABS_SHAP(shap_values[k], X_test)
foo['class'] = v
foo_all = pd.concat([foo_all,foo])
import plotly_express as px
px.bar(foo_all,x='SHAP', y='Variable', color='class')
这导致
我有以下数据框:
import pandas as pd
import random
import xgboost
import shap
foo = pd.DataFrame({'id':[1,2,3,4,5,6,7,8,9,10],
'var1':random.sample(range(1, 100), 10),
'var2':random.sample(range(1, 100), 10),
'var3':random.sample(range(1, 100), 10),
'class': ['a','a','a','a','a','b','b','c','c','c']})
为此我想运行一个class化算法来预测3 class
es
所以我将我的数据集分成训练和测试,然后我 运行 一个 xgboost
cl_cols = foo.filter(regex='var').columns
X_train, X_test, y_train, y_test = train_test_split(foo[cl_cols],
foo[['class']],
test_size=0.33, random_state=42)
model = xgboost.XGBClassifier(objective="binary:logistic")
model.fit(X_train, y_train)
现在我想得到每个 class
的平均 SHAP 值下面的代码产生了我想要的结果,但它使用 absolute SHAP 值来计算平均值,但我只需要平均值
shap_values = shap.TreeExplainer(model).shap_values(X_test)
shap.summary_plot(shap_values, X_test)
此外,该图将 class
标记为 0,1,2。我怎么知道 0,1 和 2 对应于原始文件中的哪个 class
?
因为这段代码:
shap.summary_plot(shap_values, X_test,
class_names= ['a', 'b', 'c'])
给予
和这段代码
shap.summary_plot(shap_values, X_test,
class_names= ['b', 'c', 'a'])
给予
所以我不再确定这个传说了。 有什么想法吗?
我有同样的问题,也许这个问题可以帮助:https://github.com/slundberg/shap/issues/764
我还没有测试过,但看起来顺序应该和你调用model.predict_proba()
时的顺序一样。上面的link建议使用summary plot的class_names=model.classes_
选项。
SHAP 值以列表形式返回。您可以通过其索引访问相关的 SHAP 绝对值。
对于您的 Class 0 的摘要图,代码为
shap.summary_plot(shap_values[0], X_test)
通过做一些研究并在 this post 和@Alessandro Nesti 的回答的帮助下,这是我的解决方案:
foo = pd.DataFrame({'id':[1,2,3,4,5,6,7,8,9,10],
'var1':random.sample(range(1, 100), 10),
'var2':random.sample(range(1, 100), 10),
'var3':random.sample(range(1, 100), 10),
'class': ['a','a','a','a','a','b','b','c','c','c']})
cl_cols = foo.filter(regex='var').columns
X_train, X_test, y_train, y_test = train_test_split(foo[cl_cols],
foo[['class']],
test_size=0.33, random_state=42)
model = xgboost.XGBClassifier(objective="multi:softmax")
model.fit(X_train, y_train)
def get_ABS_SHAP(df_shap,df):
#import matplotlib as plt
# Make a copy of the input data
shap_v = pd.DataFrame(df_shap)
feature_list = df.columns
shap_v.columns = feature_list
df_v = df.copy().reset_index().drop('index',axis=1)
# Determine the correlation in order to plot with different colors
corr_list = list()
for i in feature_list:
b = np.corrcoef(shap_v[i],df_v[i])[1][0]
corr_list.append(b)
corr_df = pd.concat([pd.Series(feature_list),pd.Series(corr_list)],axis=1).fillna(0)
# Make a data frame. Column 1 is the feature, and Column 2 is the correlation coefficient
corr_df.columns = ['Variable','Corr']
corr_df['Sign'] = np.where(corr_df['Corr']>0,'red','blue')
shap_abs = np.abs(shap_v)
k=pd.DataFrame(shap_abs.mean()).reset_index()
k.columns = ['Variable','SHAP_abs']
k2 = k.merge(corr_df,left_on = 'Variable',right_on='Variable',how='inner')
k2 = k2.sort_values(by='SHAP_abs',ascending = True)
k2_f = k2[['Variable', 'SHAP_abs', 'Corr']]
k2_f['SHAP_abs'] = k2_f['SHAP_abs'] * np.sign(k2_f['Corr'])
k2_f.drop(columns='Corr', inplace=True)
k2_f.rename(columns={'SHAP_abs': 'SHAP'}, inplace=True)
return k2_f
foo_all = pd.DataFrame()
for k,v in list(enumerate(model.classes_)):
foo = get_ABS_SHAP(shap_values[k], X_test)
foo['class'] = v
foo_all = pd.concat([foo_all,foo])
import plotly_express as px
px.bar(foo_all,x='SHAP', y='Variable', color='class')
这导致