r 运行 对数据子集的硬编码回归
r run hardcoded regression on subset of data
如果这是我的数据集:
dataset <- data.frame(
ID = 1:6,
Group = c("Red", "Red", "Blue", "Red", "Blue", "Blue"),
X = c(10, 11, 11, 12, 9, 13))
ID
Group
X
1
Red
10
2
Red
11
3
Blue
11
4
Red
12
5
Blue
9
6
Blue
13
我有两个线性回归方程:
(Eq. 1) Y ~ 34 + 0.35 * X [ where Group == "Red" ]
(Eq. 2) Y ~ 33.67 + 0.37 * X [ where Group == "Blue"]
如何使用我的数据集从这个回归问题中预测 Y?
Tidyverse 解决方案是
library(tidyverse)
dataset %>% mutate(Y = ifelse(Group == "Red", 34 + 0.35 * X, 33.67 + 0.37 * X ))
这假设您只有红色和蓝色的组名称。
如果这是我的数据集:
dataset <- data.frame(
ID = 1:6,
Group = c("Red", "Red", "Blue", "Red", "Blue", "Blue"),
X = c(10, 11, 11, 12, 9, 13))
ID | Group | X |
---|---|---|
1 | Red | 10 |
2 | Red | 11 |
3 | Blue | 11 |
4 | Red | 12 |
5 | Blue | 9 |
6 | Blue | 13 |
我有两个线性回归方程:
(Eq. 1) Y ~ 34 + 0.35 * X [ where Group == "Red" ]
(Eq. 2) Y ~ 33.67 + 0.37 * X [ where Group == "Blue"]
如何使用我的数据集从这个回归问题中预测 Y?
Tidyverse 解决方案是
library(tidyverse)
dataset %>% mutate(Y = ifelse(Group == "Red", 34 + 0.35 * X, 33.67 + 0.37 * X ))
这假设您只有红色和蓝色的组名称。