R 创建具有相同计算但参数 = n 的 n 列
R Creating n columns with same calculation but parameter = n
我想举例说明曲率变化的一系列计算。该变化是通过参数设置的。这是我正在做的一个例子:
param_1 = 1
param_2 = 2
param_n = 10
df <- tibble(x = c(1:10))
# A tibble: 10 x 1
x
<int>
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
df %>%
mutate(var_1 = (1 - x) / (1 + (x * param_1)),
var_2 = (1 - x) / (1 + (x * param_2)),
var_n = (1 - x) / (1 + (x * param_n)))
# A tibble: 10 x 4
x var_1 var_2 var_n
<int> <dbl> <dbl> <dbl>
1 1 0 0 0
2 2 -0.333 -0.2 -0.0476
3 3 -0.5 -0.286 -0.0645
4 4 -0.6 -0.333 -0.0732
5 5 -0.667 -0.364 -0.0784
6 6 -0.714 -0.385 -0.0820
7 7 -0.75 -0.4 -0.0845
8 8 -0.778 -0.412 -0.0864
9 9 -0.8 -0.421 -0.0879
10 10 -0.818 -0.429 -0.0891
我基本上是在寻找一种更短的方法来进行相同的分析,比如从 1 到 20,或 1 到 50,而无需手动编写 50 个参数和 50 个变量计算。我找到了一些涉及创建许多数据框的解决方案,但我希望有一个更简单的解决方案,它会自动从一个范围内创建数据列。
您可以像这样使用 map
和 unnest_wider()
tibble(x=1:10) %>%
mutate(var = map(x,~(1-.x)/(1+.x*(1:50)))) %>%
unnest_wider(var,names_sep = "")
输出:
# A tibble: 10 x 51
x var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 var11 var12 var13 var14 var15 var16 var17 var18
<int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 -0.333 -0.2 -0.143 -0.111 -0.0909 -0.0769 -0.0667 -0.0588 -0.0526 -0.0476 -0.0435 -0.04 -0.0370 -0.0345 -0.0323 -0.0303 -0.0286 -0.0270
3 3 -0.5 -0.286 -0.2 -0.154 -0.125 -0.105 -0.0909 -0.08 -0.0714 -0.0645 -0.0588 -0.0541 -0.05 -0.0465 -0.0435 -0.0408 -0.0385 -0.0364
4 4 -0.6 -0.333 -0.231 -0.176 -0.143 -0.12 -0.103 -0.0909 -0.0811 -0.0732 -0.0667 -0.0612 -0.0566 -0.0526 -0.0492 -0.0462 -0.0435 -0.0411
5 5 -0.667 -0.364 -0.25 -0.190 -0.154 -0.129 -0.111 -0.0976 -0.0870 -0.0784 -0.0714 -0.0656 -0.0606 -0.0563 -0.0526 -0.0494 -0.0465 -0.0440
6 6 -0.714 -0.385 -0.263 -0.2 -0.161 -0.135 -0.116 -0.102 -0.0909 -0.0820 -0.0746 -0.0685 -0.0633 -0.0588 -0.0549 -0.0515 -0.0485 -0.0459
7 7 -0.75 -0.4 -0.273 -0.207 -0.167 -0.140 -0.12 -0.105 -0.0938 -0.0845 -0.0769 -0.0706 -0.0652 -0.0606 -0.0566 -0.0531 -0.05 -0.0472
8 8 -0.778 -0.412 -0.28 -0.212 -0.171 -0.143 -0.123 -0.108 -0.0959 -0.0864 -0.0787 -0.0722 -0.0667 -0.0619 -0.0579 -0.0543 -0.0511 -0.0483
9 9 -0.8 -0.421 -0.286 -0.216 -0.174 -0.145 -0.125 -0.110 -0.0976 -0.0879 -0.08 -0.0734 -0.0678 -0.0630 -0.0588 -0.0552 -0.0519 -0.0491
10 10 -0.818 -0.429 -0.290 -0.220 -0.176 -0.148 -0.127 -0.111 -0.0989 -0.0891 -0.0811 -0.0744 -0.0687 -0.0638 -0.0596 -0.0559 -0.0526 -0.0497
# ... with 32 more variables: var19 <dbl>, var20 <dbl>, var21 <dbl>, var22 <dbl>, var23 <dbl>, var24 <dbl>, var25 <dbl>, var26 <dbl>, var27 <dbl>,
# var28 <dbl>, var29 <dbl>, var30 <dbl>, var31 <dbl>, var32 <dbl>, var33 <dbl>, var34 <dbl>, var35 <dbl>, var36 <dbl>, var37 <dbl>, var38 <dbl>,
# var39 <dbl>, var40 <dbl>, var41 <dbl>, var42 <dbl>, var43 <dbl>, var44 <dbl>, var45 <dbl>, var46 <dbl>, var47 <dbl>, var48 <dbl>, var49 <dbl>,
# var50 <dbl>
在基础 R 中,使用 sapply
df <- tibble(x = c(1:10))
param = 1:10
df <- cbind(df, sapply(param, \(y) (1 - df$x) / (1 + (df$x * y))))
colnames(df)[-1] <- paste0("var_", 1:10)
x var_1 var_2 var_3 var_4 var_5 var_6 var_7 var_8 var_9 var_10
1 1 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 2 -0.3333333 -0.2000000 -0.1428571 -0.1111111 -0.09090909 -0.07692308 -0.06666667 -0.05882353 -0.05263158 -0.04761905
3 3 -0.5000000 -0.2857143 -0.2000000 -0.1538462 -0.12500000 -0.10526316 -0.09090909 -0.08000000 -0.07142857 -0.06451613
4 4 -0.6000000 -0.3333333 -0.2307692 -0.1764706 -0.14285714 -0.12000000 -0.10344828 -0.09090909 -0.08108108 -0.07317073
5 5 -0.6666667 -0.3636364 -0.2500000 -0.1904762 -0.15384615 -0.12903226 -0.11111111 -0.09756098 -0.08695652 -0.07843137
6 6 -0.7142857 -0.3846154 -0.2631579 -0.2000000 -0.16129032 -0.13513514 -0.11627907 -0.10204082 -0.09090909 -0.08196721
7 7 -0.7500000 -0.4000000 -0.2727273 -0.2068966 -0.16666667 -0.13953488 -0.12000000 -0.10526316 -0.09375000 -0.08450704
8 8 -0.7777778 -0.4117647 -0.2800000 -0.2121212 -0.17073171 -0.14285714 -0.12280702 -0.10769231 -0.09589041 -0.08641975
9 9 -0.8000000 -0.4210526 -0.2857143 -0.2162162 -0.17391304 -0.14545455 -0.12500000 -0.10958904 -0.09756098 -0.08791209
10 10 -0.8181818 -0.4285714 -0.2903226 -0.2195122 -0.17647059 -0.14754098 -0.12676056 -0.11111111 -0.09890110 -0.08910891
我想举例说明曲率变化的一系列计算。该变化是通过参数设置的。这是我正在做的一个例子:
param_1 = 1
param_2 = 2
param_n = 10
df <- tibble(x = c(1:10))
# A tibble: 10 x 1
x
<int>
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
df %>%
mutate(var_1 = (1 - x) / (1 + (x * param_1)),
var_2 = (1 - x) / (1 + (x * param_2)),
var_n = (1 - x) / (1 + (x * param_n)))
# A tibble: 10 x 4
x var_1 var_2 var_n
<int> <dbl> <dbl> <dbl>
1 1 0 0 0
2 2 -0.333 -0.2 -0.0476
3 3 -0.5 -0.286 -0.0645
4 4 -0.6 -0.333 -0.0732
5 5 -0.667 -0.364 -0.0784
6 6 -0.714 -0.385 -0.0820
7 7 -0.75 -0.4 -0.0845
8 8 -0.778 -0.412 -0.0864
9 9 -0.8 -0.421 -0.0879
10 10 -0.818 -0.429 -0.0891
我基本上是在寻找一种更短的方法来进行相同的分析,比如从 1 到 20,或 1 到 50,而无需手动编写 50 个参数和 50 个变量计算。我找到了一些涉及创建许多数据框的解决方案,但我希望有一个更简单的解决方案,它会自动从一个范围内创建数据列。
您可以像这样使用 map
和 unnest_wider()
tibble(x=1:10) %>%
mutate(var = map(x,~(1-.x)/(1+.x*(1:50)))) %>%
unnest_wider(var,names_sep = "")
输出:
# A tibble: 10 x 51
x var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 var11 var12 var13 var14 var15 var16 var17 var18
<int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 -0.333 -0.2 -0.143 -0.111 -0.0909 -0.0769 -0.0667 -0.0588 -0.0526 -0.0476 -0.0435 -0.04 -0.0370 -0.0345 -0.0323 -0.0303 -0.0286 -0.0270
3 3 -0.5 -0.286 -0.2 -0.154 -0.125 -0.105 -0.0909 -0.08 -0.0714 -0.0645 -0.0588 -0.0541 -0.05 -0.0465 -0.0435 -0.0408 -0.0385 -0.0364
4 4 -0.6 -0.333 -0.231 -0.176 -0.143 -0.12 -0.103 -0.0909 -0.0811 -0.0732 -0.0667 -0.0612 -0.0566 -0.0526 -0.0492 -0.0462 -0.0435 -0.0411
5 5 -0.667 -0.364 -0.25 -0.190 -0.154 -0.129 -0.111 -0.0976 -0.0870 -0.0784 -0.0714 -0.0656 -0.0606 -0.0563 -0.0526 -0.0494 -0.0465 -0.0440
6 6 -0.714 -0.385 -0.263 -0.2 -0.161 -0.135 -0.116 -0.102 -0.0909 -0.0820 -0.0746 -0.0685 -0.0633 -0.0588 -0.0549 -0.0515 -0.0485 -0.0459
7 7 -0.75 -0.4 -0.273 -0.207 -0.167 -0.140 -0.12 -0.105 -0.0938 -0.0845 -0.0769 -0.0706 -0.0652 -0.0606 -0.0566 -0.0531 -0.05 -0.0472
8 8 -0.778 -0.412 -0.28 -0.212 -0.171 -0.143 -0.123 -0.108 -0.0959 -0.0864 -0.0787 -0.0722 -0.0667 -0.0619 -0.0579 -0.0543 -0.0511 -0.0483
9 9 -0.8 -0.421 -0.286 -0.216 -0.174 -0.145 -0.125 -0.110 -0.0976 -0.0879 -0.08 -0.0734 -0.0678 -0.0630 -0.0588 -0.0552 -0.0519 -0.0491
10 10 -0.818 -0.429 -0.290 -0.220 -0.176 -0.148 -0.127 -0.111 -0.0989 -0.0891 -0.0811 -0.0744 -0.0687 -0.0638 -0.0596 -0.0559 -0.0526 -0.0497
# ... with 32 more variables: var19 <dbl>, var20 <dbl>, var21 <dbl>, var22 <dbl>, var23 <dbl>, var24 <dbl>, var25 <dbl>, var26 <dbl>, var27 <dbl>,
# var28 <dbl>, var29 <dbl>, var30 <dbl>, var31 <dbl>, var32 <dbl>, var33 <dbl>, var34 <dbl>, var35 <dbl>, var36 <dbl>, var37 <dbl>, var38 <dbl>,
# var39 <dbl>, var40 <dbl>, var41 <dbl>, var42 <dbl>, var43 <dbl>, var44 <dbl>, var45 <dbl>, var46 <dbl>, var47 <dbl>, var48 <dbl>, var49 <dbl>,
# var50 <dbl>
在基础 R 中,使用 sapply
df <- tibble(x = c(1:10))
param = 1:10
df <- cbind(df, sapply(param, \(y) (1 - df$x) / (1 + (df$x * y))))
colnames(df)[-1] <- paste0("var_", 1:10)
x var_1 var_2 var_3 var_4 var_5 var_6 var_7 var_8 var_9 var_10
1 1 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 2 -0.3333333 -0.2000000 -0.1428571 -0.1111111 -0.09090909 -0.07692308 -0.06666667 -0.05882353 -0.05263158 -0.04761905
3 3 -0.5000000 -0.2857143 -0.2000000 -0.1538462 -0.12500000 -0.10526316 -0.09090909 -0.08000000 -0.07142857 -0.06451613
4 4 -0.6000000 -0.3333333 -0.2307692 -0.1764706 -0.14285714 -0.12000000 -0.10344828 -0.09090909 -0.08108108 -0.07317073
5 5 -0.6666667 -0.3636364 -0.2500000 -0.1904762 -0.15384615 -0.12903226 -0.11111111 -0.09756098 -0.08695652 -0.07843137
6 6 -0.7142857 -0.3846154 -0.2631579 -0.2000000 -0.16129032 -0.13513514 -0.11627907 -0.10204082 -0.09090909 -0.08196721
7 7 -0.7500000 -0.4000000 -0.2727273 -0.2068966 -0.16666667 -0.13953488 -0.12000000 -0.10526316 -0.09375000 -0.08450704
8 8 -0.7777778 -0.4117647 -0.2800000 -0.2121212 -0.17073171 -0.14285714 -0.12280702 -0.10769231 -0.09589041 -0.08641975
9 9 -0.8000000 -0.4210526 -0.2857143 -0.2162162 -0.17391304 -0.14545455 -0.12500000 -0.10958904 -0.09756098 -0.08791209
10 10 -0.8181818 -0.4285714 -0.2903226 -0.2195122 -0.17647059 -0.14754098 -0.12676056 -0.11111111 -0.09890110 -0.08910891