如何读取目录中的两个文件夹并使用 flow_from_directory 将它们合并到一个标签下?
How do I read two folders in a directory and combine them under one label using flow_from_directory?
Tensorflow/Keras
我想将图像分类为“圆形”、“方形”或“三角形”。我有一个包含 6 个文件夹的目录,每个形状都有一个单独的“阴影”或“无阴影”文件夹。如何将它们合并为一类?例如:带阴影和不带阴影的圆圈将使用 flow_from_directory 指定标签“0”。然后我会将其输入我的 CNN 模型并让它 运行.
感谢您的帮助!
classes
in flow_from_directory
需要匹配子目录名称。
示例:
shapes
├── circle
│ ├── shared
│ └── unshared
├── square
│ ├── shared
│ └── unshared
└── triangle
├── shared
└── unshared
import pathlib
# Get project root depending on your project structure.
PROJECT_ROOT = pathlib.Path().cwd().parent
SHAPES = PROJECT_ROOT / "shapes"
train_gen = ImageDataGenerator(
).flow_from_directory(
directory=SHAPES, # the path to the 'shapes' directory.
target_size=(IMAGE_WIDTH, IMAGE_HEIGHT),
classes=["circle", "square", "triangle"],
batch_size=8,
class_mode="categorical",
)
输出:
Found 12 images belonging to 3 classes.
Tensorflow/Keras
我想将图像分类为“圆形”、“方形”或“三角形”。我有一个包含 6 个文件夹的目录,每个形状都有一个单独的“阴影”或“无阴影”文件夹。如何将它们合并为一类?例如:带阴影和不带阴影的圆圈将使用 flow_from_directory 指定标签“0”。然后我会将其输入我的 CNN 模型并让它 运行.
感谢您的帮助!
classes
in flow_from_directory
需要匹配子目录名称。
示例:
shapes
├── circle
│ ├── shared
│ └── unshared
├── square
│ ├── shared
│ └── unshared
└── triangle
├── shared
└── unshared
import pathlib
# Get project root depending on your project structure.
PROJECT_ROOT = pathlib.Path().cwd().parent
SHAPES = PROJECT_ROOT / "shapes"
train_gen = ImageDataGenerator(
).flow_from_directory(
directory=SHAPES, # the path to the 'shapes' directory.
target_size=(IMAGE_WIDTH, IMAGE_HEIGHT),
classes=["circle", "square", "triangle"],
batch_size=8,
class_mode="categorical",
)
输出:
Found 12 images belonging to 3 classes.