硬对比tensorflow.keras
keras vs. tensorflow.keras
受此启发。
为什么这两个模块有区别?
我什么时候会用一个代替另一个?
还有什么我应该知道的吗?
Keras 是一个独立的 high-level API,支持 TensorFlow、Theano 和 CNTK 后端。现在,Theano 和 CNTK 已经停止开发了。
tf.keras
是集成到 TensorFlow 2 中的 Keras API。
因此,如果您打算使用 TensorFlow 作为深度学习框架,我建议您使用 tensorflow.keras
来减少头痛。
同样基于 Keras 的创建者 François Chollet 的 tweet:
We recommend you switch your Keras code to tf.keras
.
Both Theano and CNTK are out of development. Meanwhile, as Keras
backends, they represent less than 4% of Keras usage. The other 96% of
users (of which more than half are already on tf.keras
) are better
served with tf.keras
.
Keras development will focus on tf.keras
going forward.
Importantly, we will seek to start developing tf.keras
in its own
standalone GitHub repository at keras-team/keras in order to make it
much easier for 3rd party folks to contribute.
受此启发
为什么这两个模块有区别?
我什么时候会用一个代替另一个?
还有什么我应该知道的吗?
Keras 是一个独立的 high-level API,支持 TensorFlow、Theano 和 CNTK 后端。现在,Theano 和 CNTK 已经停止开发了。
tf.keras
是集成到 TensorFlow 2 中的 Keras API。
因此,如果您打算使用 TensorFlow 作为深度学习框架,我建议您使用 tensorflow.keras
来减少头痛。
同样基于 Keras 的创建者 François Chollet 的 tweet:
We recommend you switch your Keras code to
tf.keras
.Both Theano and CNTK are out of development. Meanwhile, as Keras backends, they represent less than 4% of Keras usage. The other 96% of users (of which more than half are already on
tf.keras
) are better served withtf.keras
.Keras development will focus on
tf.keras
going forward.Importantly, we will seek to start developing
tf.keras
in its own standalone GitHub repository at keras-team/keras in order to make it much easier for 3rd party folks to contribute.