model.fit() InvalidArgumentError

model.fit() InvalidArgumentError

我有一个图像分类项目。我想适合这个模型。但是,我收到了错误消息。

这是我拟合模型的代码。

model.fit(x=train_batches,
    steps_per_epoch=len(train_batches),
    validation_data=valid_batches,
    validation_steps=len(valid_batches),
    epochs=10,
    verbose=2
)

这是错误信息:

Epoch 1/10
---------------------------------------------------------------------------
InvalidArgumentError                      Traceback (most recent call last)
<ipython-input-25-59cb8d37476a> in <module>()
      5     validation_steps=len(valid_batches),
      6     epochs=10,
----> 7     verbose=2
      8 )

1 frames
/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
     53     ctx.ensure_initialized()
     54     tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
---> 55                                         inputs, attrs, num_outputs)
     56   except core._NotOkStatusException as e:
     57     if name is not None:

InvalidArgumentError: Graph execution error:

Detected at node 'categorical_crossentropy/softmax_cross_entropy_with_logits' defined at (most recent call last):
    File "/usr/lib/python3.7/runpy.py", line 193, in _run_module_as_main
      "__main__", mod_spec)
    File "/usr/lib/python3.7/runpy.py", line 85, in _run_code
      exec(code, run_globals)
    File "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py", line 16, in <module>
      app.launch_new_instance()
    File "/usr/local/lib/python3.7/dist-packages/traitlets/config/application.py", line 846, in launch_instance
      app.start()
    File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelapp.py", line 499, in start
      self.io_loop.start()
    File "/usr/local/lib/python3.7/dist-packages/tornado/platform/asyncio.py", line 132, in start
      self.asyncio_loop.run_forever()
    File "/usr/lib/python3.7/asyncio/base_events.py", line 541, in run_forever
      self._run_once()
    File "/usr/lib/python3.7/asyncio/base_events.py", line 1786, in _run_once
      handle._run()
    File "/usr/lib/python3.7/asyncio/events.py", line 88, in _run
      self._context.run(self._callback, *self._args)
    File "/usr/local/lib/python3.7/dist-packages/tornado/platform/asyncio.py", line 122, in _handle_events
      handler_func(fileobj, events)
    File "/usr/local/lib/python3.7/dist-packages/tornado/stack_context.py", line 300, in null_wrapper
      return fn(*args, **kwargs)
    File "/usr/local/lib/python3.7/dist-packages/zmq/eventloop/zmqstream.py", line 452, in _handle_events
      self._handle_recv()
    File "/usr/local/lib/python3.7/dist-packages/zmq/eventloop/zmqstream.py", line 481, in _handle_recv
      self._run_callback(callback, msg)
    File "/usr/local/lib/python3.7/dist-packages/zmq/eventloop/zmqstream.py", line 431, in _run_callback
      callback(*args, **kwargs)
    File "/usr/local/lib/python3.7/dist-packages/tornado/stack_context.py", line 300, in null_wrapper
      return fn(*args, **kwargs)
    File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 283, in dispatcher
      return self.dispatch_shell(stream, msg)
    File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
      handler(stream, idents, msg)
    File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 399, in execute_request
      user_expressions, allow_stdin)
    File "/usr/local/lib/python3.7/dist-packages/ipykernel/ipkernel.py", line 208, in do_execute
      res = shell.run_cell(code, store_history=store_history, silent=silent)
    File "/usr/local/lib/python3.7/dist-packages/ipykernel/zmqshell.py", line 537, in run_cell
      return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
    File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2718, in run_cell
      interactivity=interactivity, compiler=compiler, result=result)
    File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2828, in run_ast_nodes
      if self.run_code(code, result):
    File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2882, in run_code
      exec(code_obj, self.user_global_ns, self.user_ns)
    File "<ipython-input-25-59cb8d37476a>", line 7, in <module>
      verbose=2
    File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
      return fn(*args, **kwargs)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1384, in fit
      tmp_logs = self.train_function(iterator)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1021, in train_function
      return step_function(self, iterator)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1010, in step_function
      outputs = model.distribute_strategy.run(run_step, args=(data,))
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1000, in run_step
      outputs = model.train_step(data)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 860, in train_step
      loss = self.compute_loss(x, y, y_pred, sample_weight)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 919, in compute_loss
      y, y_pred, sample_weight, regularization_losses=self.losses)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/compile_utils.py", line 201, in __call__
      loss_value = loss_obj(y_t, y_p, sample_weight=sw)
    File "/usr/local/lib/python3.7/dist-packages/keras/losses.py", line 141, in __call__
      losses = call_fn(y_true, y_pred)
    File "/usr/local/lib/python3.7/dist-packages/keras/losses.py", line 245, in call
      return ag_fn(y_true, y_pred, **self._fn_kwargs)
    File "/usr/local/lib/python3.7/dist-packages/keras/losses.py", line 1790, in categorical_crossentropy
      y_true, y_pred, from_logits=from_logits, axis=axis)
    File "/usr/local/lib/python3.7/dist-packages/keras/backend.py", line 5099, in categorical_crossentropy
      labels=target, logits=output, axis=axis)
Node: 'categorical_crossentropy/softmax_cross_entropy_with_logits'
logits and labels must be broadcastable: logits_size=[10,2] labels_size=[10,4]
     [[{{node categorical_crossentropy/softmax_cross_entropy_with_logits}}]] [Op:__inference_train_function_1479]

查看错误消息,您的数据中有 4 个不同的 类。但是,logits 包含每个样本的 2 个值。您可能需要调整网络的最后一层。输出层应该输出维度为 [batch_size, num_classes] 的张量,即 [batch_size, 4] 但你输出的是 [batch_size, 2].