如何根据相似列将宽数据框转换为长数据框
How to convert wide dataframe to long based on similar column
我有一个这样的 pandas 数据框
我想将其转换为以下数据框
我不确定如何在这里使用 pd.wide_to_long 函数
下面是创建dataframe的数据集:
Date, IN:Male teacher ,IN:Male engineer, IN: Male Atronaut , IN:female teacher ,IN:female engineer, IN: female Atronaut ,GB:Male teacher ,GB:Male engineer, GB: Male Atronaut,GB:female teacher ,GB:female engineer, GB: female Atronaut
20220405,25,29,5,41,23,23,12,23,34,11,22,34
20220404,21,29,4,40,23,22,12,23,32,10,23,34
将 Date
列转换为 index
并为所有其他列删除可能的尾随空格 str.strip
, then replace spaces to :
and last split by one or more :
to MultiIndex
, so possible reshape by DataFrame.stack
with DataFrame.rename_axis
for new columns names created by DataFrame.reset_index
:
df1 = df.set_index('Date')
df1.columns = df1.columns.str.strip().str.replace('\s+', ':').str.split('[:]+', expand=True)
df1 = df1.stack([0,1]).rename_axis(['Date','Symbol','Gender']).reset_index()
print (df1)
Date Symbol Gender Atronaut engineer teacher
0 20220405 GB Male 34 23 12
1 20220405 GB female 34 22 11
2 20220405 IN Male 5 29 25
3 20220405 IN female 23 23 41
4 20220404 GB Male 32 23 12
5 20220404 GB female 34 23 10
6 20220404 IN Male 4 29 21
7 20220404 IN female 22 23 40
pivot_longer from pyjanitor 提供了一种抽象重塑的简单方法;这种情况下可以用正则表达式解决:
# pip install pyjanitor
import pandas as pd
import janitor
df.pivot_longer(
index = 'Date',
names_to = ('symbol', 'gender', '.value'),
names_pattern = r"(.+):\s*(.+)\s+(.+)",
sort_by_appearance = True)
Date symbol gender teacher engineer Atronaut
0 20220405 IN Male 25 29 5
1 20220405 IN female 41 23 23
2 20220405 GB Male 12 23 34
3 20220405 GB female 11 22 34
4 20220404 IN Male 21 29 4
5 20220404 IN female 40 23 22
6 20220404 GB Male 12 23 32
7 20220404 GB female 10 23 34
正则表达式有捕获组,任何与 .value
配对的组保持为 header,其余成为列值。
我有一个这样的 pandas 数据框
我想将其转换为以下数据框
我不确定如何在这里使用 pd.wide_to_long 函数
下面是创建dataframe的数据集:
Date, IN:Male teacher ,IN:Male engineer, IN: Male Atronaut , IN:female teacher ,IN:female engineer, IN: female Atronaut ,GB:Male teacher ,GB:Male engineer, GB: Male Atronaut,GB:female teacher ,GB:female engineer, GB: female Atronaut
20220405,25,29,5,41,23,23,12,23,34,11,22,34
20220404,21,29,4,40,23,22,12,23,32,10,23,34
将 Date
列转换为 index
并为所有其他列删除可能的尾随空格 str.strip
, then replace spaces to :
and last split by one or more :
to MultiIndex
, so possible reshape by DataFrame.stack
with DataFrame.rename_axis
for new columns names created by DataFrame.reset_index
:
df1 = df.set_index('Date')
df1.columns = df1.columns.str.strip().str.replace('\s+', ':').str.split('[:]+', expand=True)
df1 = df1.stack([0,1]).rename_axis(['Date','Symbol','Gender']).reset_index()
print (df1)
Date Symbol Gender Atronaut engineer teacher
0 20220405 GB Male 34 23 12
1 20220405 GB female 34 22 11
2 20220405 IN Male 5 29 25
3 20220405 IN female 23 23 41
4 20220404 GB Male 32 23 12
5 20220404 GB female 34 23 10
6 20220404 IN Male 4 29 21
7 20220404 IN female 22 23 40
pivot_longer from pyjanitor 提供了一种抽象重塑的简单方法;这种情况下可以用正则表达式解决:
# pip install pyjanitor
import pandas as pd
import janitor
df.pivot_longer(
index = 'Date',
names_to = ('symbol', 'gender', '.value'),
names_pattern = r"(.+):\s*(.+)\s+(.+)",
sort_by_appearance = True)
Date symbol gender teacher engineer Atronaut
0 20220405 IN Male 25 29 5
1 20220405 IN female 41 23 23
2 20220405 GB Male 12 23 34
3 20220405 GB female 11 22 34
4 20220404 IN Male 21 29 4
5 20220404 IN female 40 23 22
6 20220404 GB Male 12 23 32
7 20220404 GB female 10 23 34
正则表达式有捕获组,任何与 .value
配对的组保持为 header,其余成为列值。