输入神经网络的图片大小异常

The size of the image input to the neural network is abnormal

我需要向网络输入一张96 * 96尺寸的图片,但出现以下异常:

Model: "model"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 input_2 (InputLayer)        [(None, 96, 96, 3)]       0         
                                                                 
 sequential_1 (Sequential)   (None, 96, 96, 3)         0         
                                                                 
 rescaling (Rescaling)       (None, 96, 96, 3)         0         
                                                                 
 mobilenetv2_0.35_96 (Functi  (None, 3, 3, 1280)       410208    
 onal)                                                           
                                                                 
 flatten (Flatten)           (None, 11520)             0         
                                                                 
 dense (Dense)               (None, 15)                172815    
                                                                 
=================================================================
Total params: 583,023
Trainable params: 172,815
Non-trainable params: 410,208
_________________________________________________________________

(96, 96, 3)

ValueError: Input 0 of layer "model" is incompatible with the layer: expected shape=(None, 96, 96, 3), found shape=(32, 96, 3)

这很奇怪,当我调用image.shape()时,我得到了(96, 96),但是这个异常显示这个图像大小是(32, 96)。

main.py

import image_load
from pathlib import Path
from tensorflow import keras

base_path = Path()
model = keras.models.load_model(base_path.cwd().joinpath("my_model"))
model.summary()
image = image_load.load_and_preprocess_image(str(base_path.joinpath("cat4.jpg")))
print(image.shape)
predict = model.predict(image)
print(predict)

load_image.py

import tensorflow as tf
import matplotlib.pyplot as plt


def preprocess_image(image):
    image = tf.image.decode_jpeg(image, channels=3)
    image = tf.image.resize(image, [96, 96])
    image /= 255.0  # normalize to [0,1] range

    return image


def load_and_preprocess_image(path):
    image = tf.io.read_file(path)
    return preprocess_image(image)


def show_image(path):
    plt.imshow(path)
    plt.show()

这是这张图片: enter image description here

怎样才能让图片顺利进入模型并得到预测结果?

您需要像这样将 numpy 数组传递给 model.predict

predict = model.predict(np.array([image]))[0]
print(predict)

(注意最后的[0]取输出的第一个值,因为我们传递的数组只有一个值)