使用值范围连接两个数据框
Joining two data frames using range of values
我有两个数据集要加入。 income_range 数据是主数据集,我想根据收入在哪个范围内将 data_occ 加入 income_range 数据。如果在范围内有两个以上的观察值(收入),我想取较低的收入。
我试图使用 data.table 但遇到了问题。如果可能的话,我还想保留 data.frames 中的所有列。
输出数据集应该只有 7 个观测值。
library(data.table)
library(dplyr)
income_range <- data.frame(id = "France"
,inc_lower = c(10, 21, 31, 41,51,61,71)
,inc_high = c(20, 30, 40, 50,60,70,80)
,perct = c(1,2,3,4,5,6,7))
data_occ <- data.frame(id = rep(c("France","Belgium"), each=50)
,income = sample(10:80, 50)
,occ = rep(c("manager","clerk","manual","skilled","office"), each=20))
setDT(income_range)
setDT(data_occ)
第一次尝试。
df2 <- income_range [data_occ ,
on = .(id, inc_lower <= income, inc_high >= income),
.(id, income, inc_lower,inc_high,perct,occ)]
提前致谢。
由于您标记了 dplyr
,这里有一个使用该库的可能解决方案:
library('fuzzyjoin')
# join dataframes on id == id, inc_lower <= income, inc_high >= income
joined <- income_range %>%
fuzzy_left_join(data_occ,
by = c('id' = 'id', 'inc_lower' = 'income', 'inc_high' = 'income'),
match_fun = list(`==`, `<=`, `>=`)) %>%
rename(id = id.x) %>%
select(-id.y)
# sort by income, and keep only the first row of every unique perct
result <- joined %>%
arrange(income) %>%
group_by(perct) %>%
slice(1)
以及(中间)结果:
> head(joined)
id inc_lower inc_high perct income occ
1 France 10 20 1 10 manager
2 France 10 20 1 19 manager
3 France 10 20 1 14 manager
4 France 10 20 1 11 manager
5 France 10 20 1 17 manager
6 France 10 20 1 12 manager
> result
# A tibble: 7 x 6
# Groups: perct [7]
id inc_lower inc_high perct income occ
<chr> <dbl> <dbl> <dbl> <int> <chr>
1 France 10 20 1 10 manager
2 France 21 30 2 21 manual
3 France 31 40 3 31 manual
4 France 41 50 4 43 manager
5 France 51 60 5 51 clerk
6 France 61 70 6 61 manager
7 France 71 80 7 71 manager
为了便于理解,我添加了中间数据框 joined
。您可以省略它,只需将两个命令链与 %>%
.
链接在一起
这是一种data.table方法:
cols = c("inc_lower", "inc_high")
data_occ[, (cols) := income]
result = data_occ[order(income)
][income_range,
on = .(id, inc_lower>=inc_lower, inc_high<=inc_high),
mult="first"]
data_occ[, (cols) := NULL]
# id income occ inc_lower inc_high perct
# 1: France 10 clerk 10 20 1
# 2: France 21 manager 21 30 2
# 3: France 31 clerk 31 40 3
# 4: France 41 clerk 41 50 4
# 5: France 51 clerk 51 60 5
# 6: France 62 manager 61 70 6
# 7: France 71 manager 71 80 7
我有两个数据集要加入。 income_range 数据是主数据集,我想根据收入在哪个范围内将 data_occ 加入 income_range 数据。如果在范围内有两个以上的观察值(收入),我想取较低的收入。
我试图使用 data.table 但遇到了问题。如果可能的话,我还想保留 data.frames 中的所有列。
输出数据集应该只有 7 个观测值。
library(data.table)
library(dplyr)
income_range <- data.frame(id = "France"
,inc_lower = c(10, 21, 31, 41,51,61,71)
,inc_high = c(20, 30, 40, 50,60,70,80)
,perct = c(1,2,3,4,5,6,7))
data_occ <- data.frame(id = rep(c("France","Belgium"), each=50)
,income = sample(10:80, 50)
,occ = rep(c("manager","clerk","manual","skilled","office"), each=20))
setDT(income_range)
setDT(data_occ)
第一次尝试。
df2 <- income_range [data_occ ,
on = .(id, inc_lower <= income, inc_high >= income),
.(id, income, inc_lower,inc_high,perct,occ)]
提前致谢。
由于您标记了 dplyr
,这里有一个使用该库的可能解决方案:
library('fuzzyjoin')
# join dataframes on id == id, inc_lower <= income, inc_high >= income
joined <- income_range %>%
fuzzy_left_join(data_occ,
by = c('id' = 'id', 'inc_lower' = 'income', 'inc_high' = 'income'),
match_fun = list(`==`, `<=`, `>=`)) %>%
rename(id = id.x) %>%
select(-id.y)
# sort by income, and keep only the first row of every unique perct
result <- joined %>%
arrange(income) %>%
group_by(perct) %>%
slice(1)
以及(中间)结果:
> head(joined)
id inc_lower inc_high perct income occ
1 France 10 20 1 10 manager
2 France 10 20 1 19 manager
3 France 10 20 1 14 manager
4 France 10 20 1 11 manager
5 France 10 20 1 17 manager
6 France 10 20 1 12 manager
> result
# A tibble: 7 x 6
# Groups: perct [7]
id inc_lower inc_high perct income occ
<chr> <dbl> <dbl> <dbl> <int> <chr>
1 France 10 20 1 10 manager
2 France 21 30 2 21 manual
3 France 31 40 3 31 manual
4 France 41 50 4 43 manager
5 France 51 60 5 51 clerk
6 France 61 70 6 61 manager
7 France 71 80 7 71 manager
为了便于理解,我添加了中间数据框 joined
。您可以省略它,只需将两个命令链与 %>%
.
这是一种data.table方法:
cols = c("inc_lower", "inc_high")
data_occ[, (cols) := income]
result = data_occ[order(income)
][income_range,
on = .(id, inc_lower>=inc_lower, inc_high<=inc_high),
mult="first"]
data_occ[, (cols) := NULL]
# id income occ inc_lower inc_high perct
# 1: France 10 clerk 10 20 1
# 2: France 21 manager 21 30 2
# 3: France 31 clerk 31 40 3
# 4: France 41 clerk 41 50 4
# 5: France 51 clerk 51 60 5
# 6: France 62 manager 61 70 6
# 7: France 71 manager 71 80 7