Groupby 2个分类变量

Groupby 2 categorical variables

我有一个如下所示的数据框:

ID memory confidence Test (1= correct, 2=incorrect) Experiment
1 56 1 Experiment 1
1 78 0 Experiment 1
1 98 0 Experiment 1
1 24 1 Experiment 2
2 45 0 Experiment 2
2 87 1 Experiment 2

我想看看一个人的平均信心是否与他们在测试中的表现相关。所以我写了下面的代码,它显示了一个人的平均记忆信心和他们的平均分数:

df3 = df.groupby(['PID'])['accuracy','memory_confidence'].mean()

i = sns.lmplot(x = 'memory_confidence', y = 'accuracy', 数据 = df3)

我现在要做的是为实验 1 和实验 2 计算不同的相关性/lmplots

添加 'source' 不起作用,因为我得到 KeyError: "['source'] not in index"

df3 = df.groupby(['PID','source'])['accuracy','memory_confidence'].mean()

i = sns.lmplot(x = 'memory_confidence', y = 'accuracy', hue='source',数据=df3)

import numpy as np
import pandas as pd

df = pd.DataFrame([
    [1, 56, 1,  'Experiment 1'],
    [1, 78, 0,  'Experiment 1'],
    [1, 98, 0,  'Experiment 1'],
    [1, 24, 1,  'Experiment 2'],
    [2, 45, 0,  'Experiment 2'],
    [2, 87, 1,  'Experiment 2']
], columns=['ID', 'memory_confidence', 'accuracy', 'Experiment'])

sns.lmplot(x = 'memory_confidence', y = 'accuracy', hue='Experiment', data=df)
plt.show()


exp1 = df[df['Experiment'] == 'Experiment 1']
exp1_corr = exp1.corr().loc['memory_confidence', 'accuracy']
exp2 = df[df['Experiment'] == 'Experiment 2']
exp2_corr = exp2.corr().loc['memory_confidence', 'accuracy']
print(exp1_corr, exp2_corr)

生成以下内容:

-0.8794395358869003 0.18898223650461368