在 R 中有条件地删除观察结果(在使用 MatchIt 包之后)

Removing observations conditionally (after use of MatchIt package) in R

我已经使用包 MatchIt 对治疗组 (treat = 1) 和对照组 (treat = 0) 进行了精确匹配——匹配是通过 age.变量 subclass 显示匹配的单位。

如果与多个对照相匹配,我希望为每个治疗单位随机选择一个对照单位。重要的是它是随机的。

如果我有多个处理单元只与 1 个控制匹配(subclass 4 的情况),我想丢弃这样的控制单元,以便为每个子类保留相同数量的控制和单元. 最后,我希望 treat = 1 和 treat = 0 的观察次数相等。

我的真实数据集很大,包含超过一百万个子类。

structure(list(id = c("NSW1", "NSW57", "PSID6", "PSID84", "PSID147", 
"PSID349", "PSID361", "PSID400", "NSW2", "NSW6", "NSW9", "NSW60", 
"NSW77", "NSW80", "NSW127", "NSW161", "NSW169", "NSW177", "NSW179", 
"PSID15", "PSID31", "PSID41", "PSID62", "PSID92", "PSID93", "PSID150", 
"PSID167", "PSID178", "PSID254", "PSID292", "PSID300", "PSID308", 
"PSID309", "PSID314", "PSID330", "NSW3", "NSW55", "NSW109", "PSID1", 
"PSID69", "PSID91", "PSID165", "PSID166", "PSID302", "PSID378", 
"ASID9033", "ASID9034", "ASID9036"), treat = c(1L, 1L, 0L, 0L, 
0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 
1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L), age = c(37L, 
37L, 37L, 37L, 37L, 37L, 37L, 37L, 22L, 22L, 22L, 22L, 22L, 22L, 
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 30L, 30L, 30L, 30L, 30L, 
30L, 30L, 30L, 30L, 30L, 29L, 29L, 29L), race = c("black", "black", 
"black", "hispan", "white", "white", "white", "black", "hispan", 
"black", "black", "white", "black", "black", "black", "black", 
"black", "hispan", "white", "black", "hispan", "black", "white", 
"white", "white", "hispan", "white", "white", "white", "white", 
"black", "black", "white", "white", "black", "black", "black", 
"black", "white", "black", "white", "white", "white", "white", 
"white", "black", "white", "black"), married = c(1L, 0L, 1L, 
0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 
1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 
0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L), subclass = c(1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L)), class = "data.frame", row.names = c(NA, 
-48L))

这是使用 group_splitmap_dfr 的方法(可能有点复杂)。

library(tidyverse)

df %>% 
  group_split(subclass) %>% 
  map_dfr(~ if(sum(.x$treat) > (nrow(.x) / 2)) bind_rows(.x[.x$treat == 0, ], sample_n(.x[.x$treat == 1, ], nrow(.x[.x$treat == 0, ]))) 
          else if(sum(.x$treat) < (nrow(.x) / 2)) bind_rows(.x[.x$treat == 1, ], sample_n(.x[.x$treat == 0, ], nrow(.x[.x$treat == 1, ]))) 
          else .x)

# A tibble: 34 x 6
   id      treat   age race   married subclass
   <chr>   <int> <int> <chr>    <int>    <int>
 1 NSW1        1    37 black        1        1
 2 NSW57       1    37 black        0        1
 3 PSID400     0    37 black        0        1
 4 PSID84      0    37 hispan       0        1
 5 NSW2        1    22 hispan       0        2
 6 NSW6        1    22 black        0        2
 7 NSW9        1    22 black        0        2
 8 NSW60       1    22 white        0        2
 9 NSW77       1    22 black        0        2
10 NSW80       1    22 black        0        2
# ... with 24 more rows

这是一种简单的方法

library(tidyverse)
set.seed(999)
mydata %>% 
  mutate(r = runif(n = nrow(mydata))) %>%
  arrange(r) %>%
  group_by(treat, subclass) %>% 
  mutate(max_r = max(r)) %>% 
  filter(r == max_r) %>% select(-c(r, max_r)) -> mydata.filtered

我先创建一个随机数r,然后我根据r排列数据。此后,我为每个子类 x 处理单元计算 max(r),并删除 max(r) != r.

中的所有内容

这导致每个子类有 1 个处理和 1 个 non-treated obs。

> table(mydata.filtered$treat, mydata.filtered$subclass)
   
    1 2 3 4
  0 1 1 1 1
  1 1 1 1 1

数据

mydata<- structure(list(id = c("NSW1", "NSW57", "PSID6", "PSID84", "PSID147", 
                      "PSID349", "PSID361", "PSID400", "NSW2", "NSW6", "NSW9", "NSW60", 
                      "NSW77", "NSW80", "NSW127", "NSW161", "NSW169", "NSW177", "NSW179", 
                      "PSID15", "PSID31", "PSID41", "PSID62", "PSID92", "PSID93", "PSID150", 
                      "PSID167", "PSID178", "PSID254", "PSID292", "PSID300", "PSID308", 
                      "PSID309", "PSID314", "PSID330", "NSW3", "NSW55", "NSW109", "PSID1", 
                      "PSID69", "PSID91", "PSID165", "PSID166", "PSID302", "PSID378", 
                      "ASID9033", "ASID9034", "ASID9036"), treat = c(1L, 1L, 0L, 0L, 
                                                                     0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 
                                                                     0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 
                                                                     1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L), age = c(37L, 
                                                                                                                              37L, 37L, 37L, 37L, 37L, 37L, 37L, 22L, 22L, 22L, 22L, 22L, 22L, 
                                                                                                                              22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 
                                                                                                                              22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 30L, 30L, 30L, 30L, 30L, 
                                                                                                                              30L, 30L, 30L, 30L, 30L, 29L, 29L, 29L), race = c("black", "black", 
                                                                                                                                                                                "black", "hispan", "white", "white", "white", "black", "hispan", 
                                                                                                                                                                                "black", "black", "white", "black", "black", "black", "black", 
                                                                                                                                                                                "black", "hispan", "white", "black", "hispan", "black", "white", 
                                                                                                                                                                                "white", "white", "hispan", "white", "white", "white", "white", 
                                                                                                                                                                                "black", "black", "white", "white", "black", "black", "black",                                                                                                                                                                                 "black", "white", "black", "white", "white", "white", "white", 
                                                                                                                                                                                "white", "black", "white", "black"), married = c(1L, 0L, 1L, 
                                                                                                                                                                                                                                 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 
                                                                                                                                                                                                                                 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 
                                                                                                                                                                                                                                 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L), subclass = c(1L, 
                                                                                                                                                                                                                                                                                                   1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
                                                                                                                                                                                                                                                                                                   2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
                                                                                                                                                                                                                                                                                                   2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L)), class = "data.frame", row.names = c(NA, 
                                                                                                                                                                                                                                                                                                                                                                                                     -48L))

?MatchIt 似乎还提供了 ratio 参数,可用于在匹配函数调用中强制进行一对一匹配。

另一种(基础 R)方法:

md <- do.call("rbind", unname(lapply(split(md, ~subclass),
                                     function(x) {
                                         x[c(which(x$treat == 1)[1], 
                                             which(x$treat == 0)[1]),]
                                     })))

从每个子类中获取第一个处理过的和第一个控制单元,然后 rbind 将它们放在一起。如果您的数据是随机排序的,这相当于随机选择一个处理单元和一个控制单元。