调整使用 data.table 函数的代码

Adjust code that uses data.table function

下面的代码使用 data.table 函数生成输出 table。但是,我想知道是否有可能以某种方式优化代码并仍然得到相同的结果?想法是减少代码以减少处理时间。

library(dplyr)
library(tidyr)
library(lubridate)
library(data.table)

df1 <- structure(
  list(date1= c("2021-06-28","2021-06-28","2021-06-28","2021-06-28","2021-06-28",
                "2021-06-28","2021-06-28","2021-06-28"),
       date2 = c("2021-06-25","2021-06-25","2021-06-27","2021-07-07","2021-07-07","2021-07-09","2021-07-09","2021-07-09"),
       Code = c("FDE","ABC","ABC","ABC","CDE","FGE","ABC","CDE"),
       Week= c("Wednesday","Wednesday","Friday","Wednesday","Wednesday","Friday","Friday","Friday"),
       DR1 = c(4,1,4,3,6,4,3,5),
       DR01 = c(4,1,4,3,3,4,3,6), DR02= c(4,2,6,7,3,2,7,4),DR03= c(9,5,4,3,3,2,1,5),
       DR04 = c(5,4,3,3,6,2,1,9),DR05 = c(5,4,5,3,6,2,1,9),
       DR06 = c(2,4,3,3,5,6,7,8),DR07 = c(2,5,4,4,9,4,7,8),
       DR08 = c(4,0,0,1,2,4,4,4),DR09 = c(2,5,4,4,9,4,7,8),DR010 = c(2,5,4,4,9,4,7,8),DR011 = c(4,7,3,2,2,7,7,7), 
       DR012 = c(4,4,2,3,0,4,4,5),DR013 = c(4,4,1,4,0,3,2,0),DR014 = c(0,3,1,2,0,2,NA,NA)),
  class = "data.frame", row.names = c(NA, -8L))

selection = startsWith(names(df1), "DR0")

df1[selection][is.na(df1[selection])] = 0

dt1 <- as.data.table(df1)

cols <- grep("^DR0", colnames(dt1), value = TRUE)

medi_ana <- 
  dt1[, (paste0(cols, "_PV")) := DR1 - .SD, .SDcols = cols
  ][, lapply(.SD, median), by = .(Code, Week), .SDcols = paste0(cols, "_PV") ]

f1 <- function(nm, pat) grep(pat, nm, value = TRUE)
nm1 <- f1(names(df1), "^DR0\d+$")
nm2 <- f1(names(medi_ana), "_PV")
nm3 <- paste0("i.", nm2)
setDT(df1)[medi_ana,  (nm2) := Map(`+`, mget(nm1), mget(nm3)), on = .(Code, Week)]
SPV1 <- df1[, c('date1', 'date2', 'Code', 'Week', nm2), with = FALSE]

dmda<-"2021-07-09"
code<-"CDE"

SPV2<-melt(SPV1[date2 == dmda & Code == code][, 
   lapply(.SD, sum, na.rm = TRUE), by = Code, 
   .SDcols = patterns("^DR0")],
    id.var = "Code", variable.name = "name", value.name = "val")[, 
      name := readr::parse_number(as.character(name))][]

 > SPV2
    Code name val
 1:  CDE    1   5
 2:  CDE    2   5
 3:  CDE    3   5
 4:  CDE    4   5
 5:  CDE    5   5
 6:  CDE    6   5
 7:  CDE    7   5
 8:  CDE    8   5
 9:  CDE    9   5
10:  CDE   10   5
11:  CDE   11   5
12:  CDE   12   5
13:  CDE   13   5
14:  CDE   14   5

result <- SPV2 %>% 
    group_by(Code) %>% 
    slice((as.Date(dmda) - min(as.Date(df1$date1) [
      df1$Code == first(Code)])):max(name)+1) %>%
    ungroup

> result

# A tibble: 3 x 3
  Code   name   val
  <chr> <dbl> <dbl>
1 CDE      12     5
2 CDE      13     5
3 CDE      14     5

dplyr代码可以转换为data.table

SPV2[na.omit(SPV2[, .I[(as.Date(dmda) - min(as.Date(df1$date1) [ 
         df1$Code == first(Code)])):max(name)+1], .(Code)]$V1)]

-输出

    Code  name   val
   <char> <num> <num>
1:    CDE    12     5
2:    CDE    13     5
3:    CDE    14     5